Do you want to publish a course? Click here

Equilibrium states for the Bose gas

67   0   0.0 ( 0 )
 Added by Lieselot Vandevenne
 Publication date 2003
  fields Physics
and research's language is English




Ask ChatGPT about the research

The generating functional of the cyclic representation of the CCR (Canonical Commutation Relations) representation for the thermodynamic limit of the grand canonical ensemble of the free Bose gas with attractive boundary conditions is rigorously computed. We use it to study the condensate localization as a function of the homothety point for the thermodynamic limit using a sequence of growing convex containers. The Kac function is explicitly obtained proving non-equivalence of ensembles in the condensate region in spite of the condensate density being zero locally.



rate research

Read More

114 - Y. Suhov , M. Kelbert , I. Stuhl 2013
This paper continues the work Y. Suhov, M. Kelbert. FK-DLR states of a quantum bose-gas, arXiv:1304.0782 [math-ph], and focuses on infinite-volume bosonic states for a quantum system (a quantum gas) in a plane. We work under similar assumptions upon the form of local Hamiltonians and the type of the (pair) interaction potential as in the reference above. The result of the paper is that any infinite-volume FK-DLR functional corresponding to the Hamiltonians is shift-invariant, regardless of whether this functional is unique or not.
357 - Armand Bernou 2019
We use a probabilistic approach to study the rate of convergence to equilibrium for a collisionless (Knudsen) gas in dimension equal to or larger than 2. The use of a coupling between two stochastic processes allows us to extend and refine, in total variation distance, the polynomial rate of convergence given in [AG11] and [KLT13]. This is, to our knowledge, the first quantitative result in collisionless kinetic theory in dimension equal to or larger than 2 that does not require any symmetry of the domain, nor a monokinetic regime. Our study is also more general in terms of reflection at the boundary: we allow for rather general diffusive reflections and for a specular reflection component.
We present a general construction of matrix product states for stationary density matrices of one-dimensional quantum spin systems kept out of equilibrium through boundary Lindblad dynamics. As an application we review the isotropic Heisenberg quantum spin chain which is closely related to the generator of the simple symmetric exclusion process. Exact and heuristic results as well as numerical evidence suggest a local quantum equilibrium and long-range correlations reminiscent of similar large-scale properties in classical stochastic interacting particle systems that can be understood in terms of fluctuating hydrodynamics.
237 - J.-B. Bru , V. A. Zagrebnov 2007
The superstable Weakly Imperfect Bose Gas {(WIBG)} was originally derived to solve the inconsistency of the Bogoliubov theory of superfluidity. Its grand-canonical thermodynamics was recently solved but not at {point of} the {(first order)} phase transition. This paper proposes to close this gap by using the large deviations formalism and in particular the analysis of the Kac distribution function. It turns out that, as a function of the chemical potential, the discontinuity of the Bose condensate density at the phase transition {point} disappears as a function of the particle density. Indeed, the Bose condensate continuously starts at the first critical particle density and progressively grows but the free-energy per particle stays constant until the second critical density is reached. At higher particle densities, the Bose condensate density as well as the free-energy per particle both increase {monotonously}.
We study the asymptotics of solutions of the Boltzmann equation describing the kinetic limit of a lattice of classical interacting anharmonic oscillators. We prove that, if the initial condition is a small perturbation of an equilibrium state, and vanishes at infinity, the dynamics tends diffusively to equilibrium. The solution is the sum of a local equilibrium state, associated to conserved quantities that diffuse to zero, and fast variables that are slaved to the slow ones. This slaving implies the Fourier law, which relates the induced currents to the gradients of the conserved quantities.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا