No Arabic abstract
We use a probabilistic approach to study the rate of convergence to equilibrium for a collisionless (Knudsen) gas in dimension equal to or larger than 2. The use of a coupling between two stochastic processes allows us to extend and refine, in total variation distance, the polynomial rate of convergence given in [AG11] and [KLT13]. This is, to our knowledge, the first quantitative result in collisionless kinetic theory in dimension equal to or larger than 2 that does not require any symmetry of the domain, nor a monokinetic regime. Our study is also more general in terms of reflection at the boundary: we allow for rather general diffusive reflections and for a specular reflection component.
We study the asymptotics of solutions of the Boltzmann equation describing the kinetic limit of a lattice of classical interacting anharmonic oscillators. We prove that, if the initial condition is a small perturbation of an equilibrium state, and vanishes at infinity, the dynamics tends diffusively to equilibrium. The solution is the sum of a local equilibrium state, associated to conserved quantities that diffuse to zero, and fast variables that are slaved to the slow ones. This slaving implies the Fourier law, which relates the induced currents to the gradients of the conserved quantities.
The generating functional of the cyclic representation of the CCR (Canonical Commutation Relations) representation for the thermodynamic limit of the grand canonical ensemble of the free Bose gas with attractive boundary conditions is rigorously computed. We use it to study the condensate localization as a function of the homothety point for the thermodynamic limit using a sequence of growing convex containers. The Kac function is explicitly obtained proving non-equivalence of ensembles in the condensate region in spite of the condensate density being zero locally.
We present a new dynamical proof of the Thouless-Anderson-Palmer (TAP) equations for the classical Sherrington-Kirkpatrick spin glass at sufficiently high temperature. In our derivation, the TAP equations are a simple consequence of the decay of the two point correlation functions. The methods can also be used to establish the decay of higher order correlation functions. We illustrate this by proving a suitable decay bound on the three point functions from which we derive an analogue of the TAP equations for the two point functions.
The cavity and TAP equations are high-dimensional systems of nonlinear equations of the local magnetization in the Sherrington-Kirkpatrick model. In the seminal work [Comm. Math. Phys., 325(1):333-366, 2014], Bolthausen introduced an iterative scheme that produces an asymptotic solution to the TAP equations if the model lies inside the Almeida-Thouless transition line. However, it was unclear if this asymptotic solution coincides with the local magnetization. In this work, motivated by the cavity equations, we introduce a new iterative scheme and establish a weak law of large numbers. We show that our new scheme is asymptotically the same as the so-called Approximate Message Passing algorithm, a generalization of Bolthausens iteration, that has been popularly adapted in compressed sensing, Bayesian inferences, etc. Based on this, we confirm that our cavity iteration and Bolthausens scheme both converge to the local magnetization as long as the overlap is locally uniformly concentrated.
We study a class of systems whose dynamics are described by generalized Langevin equations with state-dependent coefficients. We find that in the limit, in which all the characteristic time scales vanish at the same rate, the position variable of the system converges to a homogenized process, described by an equation containing additional drift terms induced by the noise. The convergence results are obtained using the main result in cite{hottovy2015smoluchowski}, whose version is proven here under a weaker spectral assumption on the damping matrix. We apply our results to study thermophoresis of a Brownian particle in a non-equilibrium heat bath.