No Arabic abstract
The one-loop effective potential for gauge models in static de Sitter space at finite temperatures is computed by means of the $zeta$--function method. We found a simple relation which links the effective potentials of gauge and scalar fields at all temperatures. In the de Sitter invariant and zero-temperature states the potential for the scalar electrodynamics is explicitly obtained, and its properties in these two vacua are compared. In this theory the two states are shown to behave similarly in the regimes of very large and very small radii a of the background space. For the gauge symmetry broken in the flat limit ($a to infty$) there is a critical value of a for which the symmetry is restored in both quantum states. Moreover, the phase transitions which occur at large or at small a are of the first or of the second order, respectively, regardless the vacuum considered. The analytical and numerical analysis of the critical parameters of the above theory is performed. We also established a class of models for which the kind of phase transition occurring depends on the choice of the vacuum.
Maximally symmetric curved-brane solutions are studied in dilatonic braneworld models which realise the self-tuning of the effective four-dimensional cosmological constant. It is found that no vacua in which the brane has de Sitter or anti-de Sitter geometry exist, unless one modifies the near-boundary asymptotics of the bulk fields. In the holographic dual picture, this corresponds to coupling the UV CFT to a curved metric (possibly with a defect). Alternatively, the same may be achieved in a flat-space QFT with suitable variable scalar sources. With these ingredients, it is found that maximally symmetric, positive and negative curvature solutions with a stabilised brane position generically exist. The space of such solutions is studied in two different types of realisations of the self-tuning framework. In some regimes we observe a large hierarchy between the curvature on the brane and the boundary UV CFT curvature. This is a dynamical effect due to the self-stabilisation mechanism. This setup provides an alternative route to realising de Sitter space in string theory.
The constant curvature (CC) black holes are higher dimensional generalizations of BTZ black holes. It is known that these black holes have the unusual topology of ${cal M}_{D-1}times S^1$, where $D$ is the spacetime dimension and ${cal M}_{D-1}$ stands for a conformal Minkowski spacetime in $D-1$ dimensions. The unusual topology and time-dependence for the exterior of these black holes cause some difficulties to derive their thermodynamic quantities. In this work, by using globally embedding approach, we obtain the Hawking temperature of the CC black holes. We find that the Hawking temperature takes the same form when using both the static an global coordinates. Also it is identical to the Gibbons-Hawking temperature of the boundary de Sitter spaces of these CC black holes. Employing the same approach, we obtain the Hawking temperature for the counterparts of CC black holes in de Sitter spaces.
We demonstrate that possession of a single negative mode is not a sufficient criterion for an instanton to mediate exponential decay. For example, de Sitter space is generically stable against decay via the Coleman-De Luccia instanton. This is due to the fact that the de Sitter Euclidean action is bounded below, allowing for an approximately de Sitter invariant false vacuum to be constructed.
We investigate infrared logarithms in inflationary Universe from holographic perspective. We derive gravitational Fokker-Planck and Langevin equations from the consistency condition in quantum gravity. As for primordial perturbations , our approach predicts the identical spectrum with delta N formalism, supporting the consistency of our approach. The existence of the ultraviolet fixed point indicates that the Universe begun with the de Sitter expansion at the Planck scale. We have constructed the UV complete composite inflation model with the logarithmic scaling violation. The epsilon parameter decreases at first but then grows to terminate the inflation. The epsilon problem is naturally solved and Big Bang Universe is realized in the composite Universe.
Pure de Sitter, anti de Sitter, and orthogonal gauge theories in four-dimensional Euclidean spacetime are studied. It is shown that, if the theory is asymptotically free and a dynamical mass is generated, then an effective geometry may be induced and a gravity theory emerges. The asymptotic freedom and the running of the mass might account for an Inonu-Wigner contraction which induces a breaking of the gauge group to the Lorentz group, while the mass itself is responsible for the coset sector of the gauge field to be identified with the effective vierbein. Furthermore, the resulting local isometries are Lorentzian for the anti de Sitter group and Euclidean for the de Sitter and orthogonal groups.