No Arabic abstract
The low energy dynamics of vortices in selfdual Abelian Higgs theory is of second order in vortex velocity and characterized by the moduli space metric. When Chern-Simons term with small coefficient is added to the theory, we show that a term linear in vortex velocity appears and can be consistently added to the second order expression. We provides an additional check of the first and second order terms by studying the angular momentum in the field theory. We briefly explore other first order term due to small background electric charge density and also the harmonic potential well for vortices given by the moment of inertia.
We determine the most general form of the equations of relativistic superfluid hydrodynamics consistent with Lorentz invariance, time-reversal invariance, the Onsager principle and the second law of thermodynamics at first order in the derivative expansion. Once parity is violated, either because the $U(1)$ symmetry is anomalous or as a consequence of a different parity-breaking mechanism, our results deviate from the standard textbook analysis of superfluids. Our general equations require the specification of twenty parameters (such as the viscosity and conductivity). In the limit of small relative superfluid velocities we find a seven parameter set of equations. In the same limit, we have used the AdS/CFT correspondence to compute the parity odd contributions to the superfluid equations of motion for a generic holographic model and have verified that our results are consistent.
We derive the equations of second order dissipative fluid dynamics from the relativistic Boltzmann equation following the method of W. Israel and J. M. Stewart. We present a frame independent calculation of all first- and second-order terms and their coefficients using a linearised collision integral. Therefore, we restore all terms that were previously neglected in the original papers of W. Israel and J. M. Stewart.
This paper investigates the d = 4, N = 4 Abelian, global Super-Yang Mills system (SUSY-YM). It is shown how the N = 2 Fayet Hypermultiplet (FH) and N = 2 vector multiplet (VM) are embedded within. The central charges provide a plethora of information as to further symmetries of the Lagrangian. Several of these symmetries are calculated to second order. It is hoped that investigations such as these may yield avenues to help solve the auxiliary field closure problem for d = 4, N = 4, SUSY-YM and the d = 4, N = 2 Fayet-Hypermultiplet, without using an infinite number of auxiliary fields.
The quasispecies model describes processes related to the origin of life and viral evolutionary dynamics. We discuss how the error catastrophe that reflects the transition from localized to delocalized quasispecies population is affected by catalytic replication of different reaction orders. Specifically, we find that 2nd order mechanisms lead to 1st order discontinuous phase transitions in the viable population fraction, and conclude that the higher the interaction the lower the transition. We discuss potential implications for understanding the replication of highly mutating RNA viruses.
The perturbation method is an approximation scheme with a solvable leading-order. The standard way is to choose a non-interacting sector for the leading order. The adaptive perturbation method improves the solvable part in bosonic systems by using all diagonal elements of the Fock state. We consider the harmonic oscillator with the interacting term, $lambda_1x^4/6+lambda_2x^6/120$, where $lambda_1$ and $lambda_2$ are coupling constants, and $x$ is the position operator. The spectrum shows a quantitative result, less than 1 percent error, compared to a numerical solution when we use the adaptive perturbation method up to the second-order and turn off the $lambda_2$. When we turn on the $lambda_2$, the deviation becomes larger, but the error is still less than 2 percent error. Our qualitative results are demonstrated in different values of coupling constants, not only focused on a weakly coupled region.