Do you want to publish a course? Click here

Conformal boundary conditions and 3D topological field theory

126   0   0.0 ( 0 )
 Publication date 2001
  fields Physics
and research's language is English




Ask ChatGPT about the research

Topological field theory in three dimensions provides a powerful tool to construct correlation functions and to describe boundary conditions in two-dimensional conformal field theories.



rate research

Read More

70 - C. Schweigert , J. Fuchs 2000
The correlation functions of a two-dimensional rational conformal field theory, for an arbitrary number of bulk and boundary fields and arbitrary world sheets can be expressed in terms of Wilson graphs in appropriate three-manifolds. We present a systematic approach to boundary conditions that break bulk symmetries. It is based on the construction, by `alpha-induction, of a fusion ring for the boundary fields. Its structure constants are the annulus coefficients and its 6j-symbols give the OPE of boundary fields. Symmetry breaking boundary conditions correspond to solitonic sectors.
This is an introduction to two-dimensional conformal field theory and its applications in string theory. Modern concepts of conformal field theory are explained, and it is outlined how they are used in recent studies of D-branes in the strong curvature regime by means of CFT on surfaces with boundary.
120 - J. Fuchs , C. Schweigert 2001
We study properties of the category of modules of an algebra object A in a tensor category C. We show that the module category inherits various structures from C, provided that A is a Frobenius algebra with certain additional properties. As a by-product we obtain results about the Frobenius-Schur indicator in sovereign tensor categories. A braiding on C is not needed, nor is semisimplicity. We apply our results to the description of boundary conditions in two-dimensional conformal field theory and present illustrative examples. We show that when the module category is tensor, then it gives rise to a NIM-rep of the fusion rules, and discuss a possible relation with the representation theory of vertex operator algebras.
We propose matching pairs of half-BPS boundary conditions related by IR dualities of 3d $mathcal{N}=2$ gauge theories. From these matching pairs we construct duality interfaces. We test our proposals by anomaly matching and the computation of supersymmetric indices. Examples include basic abelian dualities, level-rank dualities, and Aharony dualities.
79 - M. A. Shpot 2019
We present an analytic calculation of the layer (parallel) susceptibility at the extraordinary transition in a semi-infinite system with a flat boundary. Using the method of integral transforms put forward by McAvity and Osborn [Nucl. Phys. B 455 (1995) 522] in the boundary CFT we derive the coordinate-space representation of the mean-field propagator at the transition point. The simple algebraic structure of this function provides a practical possibility of higher-order calculations. Thus we calculate the explicit expression for the layer susceptibility at the extraordinary transition in the one-loop approximation. Our result is correct up to order $O(varepsilon)$ of the $varepsilon=4-d$ expansion and holds for arbitrary width of the layer and its position in the half-space. We discuss the general structure of our result and consider the limiting cases related to the boundary operator expansion and (bulk) operator product expansion. We compare our findings with previously known results and less complicated formulas in the case of the ordinary transition. We believe that analytic results for layer susceptibilities could be a good starting point for efficient calculations of two-point correlation functions. This possibility would be of great importance given the recent breakthrough in bulk and boundary conformal field theories in general dimensions.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا