Do you want to publish a course? Click here

The impact of new neutrino DIS and Drell-Yan data on large-x parton distributions

54   0   0.0 ( 0 )
 Added by Joseph F. Owens
 Publication date 2007
  fields
and research's language is English




Ask ChatGPT about the research

New data sets have recently become available for neutrino and antineutrino deep inelastic scattering on nuclear targets and for inclusive dimuon production in pp pd interactions. These data sets are sensitive to different combinations of parton distribution functions in the large-x region and, therefore, provide different constraints when incorporated into global parton distribution function fits. We compare and contrast the effects of these new data on parton distribution fits, with special emphasis on the effects at large x. The effects of the use of nuclear targets in the neutrino and antineutrino data sets are also investigated.



rate research

Read More

The high-energy tails of charged- and neutral-current Drell-Yan processes provide important constraints on the light quark and anti-quark parton distribution functions (PDFs) in the large-x region. At the same time, short-distance new physics effects such as those encoded by the Standard Model Effective Field Theory (SMEFT) would induce smooth distortions to the same high-energy Drell-Yan tails. In this work, we assess for the first time the interplay between PDFs and EFT effects for high-mass Drell-Yan processes at the LHC and quantify the impact that the consistent joint determination of PDFs and Wilson coefficients has on the bounds derived for the latter. We consider two well-motivated new physics scenarios: $1)$ electroweak oblique corrections $(hat W, hat Y)$ and $2)$ four-fermion interactions potentially related to the LHCb anomalies in $R(K^{(*)})$. We account for available Drell-Yan data, both from unfolded cross sections and from searches, and carry out dedicated projections for the High-Luminosity LHC. Our main finding is that, while the interplay between PDFs and EFT effects remains moderate for the current dataset, it will become a significant challenge for EFT analyses at the HL-LHC.
We present an extraction of unpolarised Transverse-Momentum-Dependent Parton Distribution Functions based on Drell-Yan production data from different experiments, including those at the LHC, and spanning a wide kinematic range. We deal with experimental uncertainties by properly taking into account correlations. We include resummation of logarithms of the transverse momentum of the vector boson up to N$^3$LL order, and we include non-perturbative contributions. These ingredients allow us to obtain a remarkable agreement with the data.
We present a new set of leading twist parton distribution functions, referred to as CJ15, which take advantage of developments in the theoretical treatment of nuclear corrections as well as new data. The analysis includes for the first time data on the free neutron structure function from Jefferson Lab, and new high-precision charged lepton and W-boson asymmetry data from Fermilab. These significantly reduce the uncertainty on the d/u ratio at large values of x and provide new insights into the partonic structure of bound nucleons.
We present the extraction of unpolarized quark transverse momentum dependent parton distribution functions (TMDPDFs) and the non-perturbative part of TMD evolution kernel from the global analysis of Drell-Yan and $Z$-boson production data. The analysis is performed at the next-to-next-to-leading order (NNLO) in perturbative QCD, using the $zeta$-prescription. The estimation of the error-propagation from the experimental uncertainties to non-perturbative function is made by the replica method. The importance of the inclusion of the precise LHC data and its influence on the determination of non-perturbative functions is discussed.
129 - Ian Balitsky 2021
The Drell-Yan process is studied in the framework of TMD factorization in the Sudakov region $sgg Q^2gg q_perp^2$ corresponding to recent LHC experiments with $Q^2$ of order of mass of Z-boson and transverse momentum of DY pair $sim$ few tens GeV. The DY hadronic tensors are expressed in terms of quark and quark-gluon TMDs with ${1over Q^2}$ and ${1over N_c^2}$ accuracy. It is demonstrated that in the leading order in $N_c$ the higher-twist quark-quark-gluon TMDs reduce to leading-twist TMDs due to QCD equation of motion. The resulting hadronic tensors depend on two leading-twist TMDs: $f_1$ responsible for total DY cross section, and Boer-Mulders function $h_1^perp$. The corresponding qualitative and semi-quantitative predictions seem to agree with LHC data on five angular coefficients $A_0-A_4$ of DY pair production. The remaining three coefficients $A_5-A_7$ are determined by quark-quark-gluon TMDs multiplied by extra ${1over N_c}$ so they appear to be relatively small in accordance with LHC results.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا