We present an extraction of unpolarised Transverse-Momentum-Dependent Parton Distribution Functions based on Drell-Yan production data from different experiments, including those at the LHC, and spanning a wide kinematic range. We deal with experimental uncertainties by properly taking into account correlations. We include resummation of logarithms of the transverse momentum of the vector boson up to N$^3$LL order, and we include non-perturbative contributions. These ingredients allow us to obtain a remarkable agreement with the data.
We present the extraction of unpolarized quark transverse momentum dependent parton distribution functions (TMDPDFs) and the non-perturbative part of TMD evolution kernel from the global analysis of Drell-Yan and $Z$-boson production data. The analysis is performed at the next-to-next-to-leading order (NNLO) in perturbative QCD, using the $zeta$-prescription. The estimation of the error-propagation from the experimental uncertainties to non-perturbative function is made by the replica method. The importance of the inclusion of the precise LHC data and its influence on the determination of non-perturbative functions is discussed.
We present the resummed predictions for inclusive cross-section for Drell-Yan (DY) production as well as onshell $Z,W^pm$ productions at next-to-next-to-next-to leading logarithmic (N$^{3}$LL) accuracy. Using the standard techniques, we derive the $N$-dependent coefficients in the Mellin-$N$ space as well as the $N$-independent constants and match the resummed result through the minimal prescription matching procedure with that of existing next-to next-to leading order (NNLO). In addition to the standard $ln N$ exponentiation, we study the numerical impacts of exponentiating $N$-independent part of the soft function and the complete $bar{g}_0$ that appears in the resummed predictions in $N$ space. All the analytical pieces needed in these different approaches are extracted from the soft-virtual part of the inclusive cross section known to next-to-next-to-next-to leading order (N$^3$LO). We perform a detailed analysis on the scale and parton distribution function (PDF) variations and present predictions for the 13 TeV LHC for the neutral Drell-Yan process as well as onshell charged and neutral vector boson productions.
We consider Drell-Yan production $ppto V^* X to L X$ at small $q_T ll Q$. Experimental measurements require fiducial cuts on the leptonic state $L$, which introduce enhanced, linear power corrections in $q_T/Q$. We show that they can be unambiguously predicted from factorization, and resummed to the same order as the leading-power contribution. We thus obtain predictions for the fiducial $q_T$ spectrum to N3LL and next-to-leading-power in $q_T/Q$. Matching to full NNLO ($alpha_s^2$), we find that the linear power corrections are indeed the dominant ones, and the remaining fixed-order corrections become almost negligible below $q_T lesssim 40$ GeV. We also discuss the implications for more complicated observables, and provide predictions for the fiducial $phi^*$ spectrum at N3LL+NNLO. We find excellent agreement with ATLAS and CMS measurements of $q_T$ and $phi^*$. We also consider the $p_T^ell$ spectrum. We show that it develops leptonic power corrections in $q_T/(Q - 2p_T^ell)$, which diverge near the Jacobian peak $p_T^ell sim Q/2$ and must be kept to all powers to obtain a meaningful result there. Doing so, we obtain for the first time an analytically resummed result for the $p_T^ell$ spectrum around the Jacobian peak at N3LL+NNLO. Our method is based on performing a complete tensor decomposition for hadronic and leptonic tensors. In practice this is equivalent to often-used recoil prescriptions, for which our results now provide rigorous, formal justification. Our tensor decomposition yields nine Lorentz-scalar hadronic structure functions, which directly map onto the commonly used angular coefficients, but also holds for arbitrary leptonic final states. In particular, for suitably defined Born-projected leptons it still yields a LO-like angular decomposition even when including QED final-state radiation. We also discuss the application to $q_T$ subtractions.
We present a first attempt at a global fit of unpolarized quark transverse momentum dependent distribution and fragmentation functions from available data on semi-inclusive deep-inelastic scattering, Drell-Yan and $Z$ boson production processes. This analysis is performed in the low transverse momentum region, at leading order in perturbative QCD and with the inclusion of energy scale evolution effects at the next-to-leading logarithmic accuracy.
During the INT-18-3 workshop, we presented an analysis of unpolarized Drell-Yan pair production in pion-nucleus scattering with a particular focus into the pion Transverse Momentum Distributions in view of the future Electron Ion Collider. The transverse distributions of the pion calculated in a Nambu--Jona-Lasinio framework, with Pauli-Villars regularization, were used. The pion Transverse Momentum Distributions evolved up to next-to-leading logarithmic accuracy is then tested against the transverse momentum spectrum of dilepton pairs up to a transverse momentum of 2 GeV. We found a fair agreement with available pion-nucleus data. This contribution joins common efforts from the TMD and the pion structure communities for the Electron Ion Collider.