No Arabic abstract
We study lepton flavour violating decays of neutralinos and sleptons within the Minimal Supersymmetric Standard Model, assuming two and three generation mixings in the slepton sector. We take into account the most recent bounds on flavour violating rare lepton decays. Taking the SPS1a scenario as an example, we show that some of the lepton flavour violating branching ratios of neutralinos and sleptons can be sizable (~ 5-10%). We study the impact of the lepton flavour violating neutralino and slepton decays on the di-lepton mass distributions measured at LHC. We find that they can result in novel and characteristic edge structures in the distributions. In particular, double-edge structures can appear in the e tau and mu tau mass spectra if ~tau_1 is the lightest slepton. The appearance of these remarkable structures provides a powerful test of supersymmetric lepton flavour violation at LHC.
We discuss lepton flavour violating processes induced in the production and decay of heavy right-handed neutrinos at the LHC. Such particles appear in left-right symmetrical extensions of the Standard Model as the messengers of neutrino mass generation, and can have masses at the TeV scale. We determine the expected sensitivity on the right-handed neutrino mixing matrix, as well as on the right-handed gauge boson and heavy neutrino masses. By comparing the sensitivity of the LHC with that of searches for low energy LFV processes, we identify favourable areas of the parameter space to explore the complementarity between LFV at low and high energies.
When the mass difference between the lightest slepton and the lightest neutralino is smaller than the tau mass, the lifetime of the lightest slepton in the constrained Minimal Supersymmetric Standard Model (MSSM) increases in many orders of magnitude with respect to typical lifetimes of other supersymmetric particles. In a general MSSM, the lifetime of the lightest slepton is inversely proportional to the square of the intergenerational mixing in the slepton mass matrices. Such a long-lived slepton would produce a distinctive signature at LHC and a measurement of its lifetime would be relatively simple. Therefore, the long-lived slepton scenario offers an excellent opportunity to study lepton flavour violation at ATLAS and CMS detectors in the LHC and an improvement of the leptonic mass insertion bounds by more than five orders of magnitude would be possible.
We explore possible signatures for charged lepton flavour violation (LFV), sparticle discovery at the LHC and dark matter (DM) searches in grand unified theories (GUTs) based on SU(5), flipped SU(5) (FSU(5)) and SU(4)$_c times $SU(2)$_L times $SU(2)$_R$ (4-2-2). We assume that soft supersymmetry-breaking terms preserve the group symmetry at some high input scale, and focus on the non-universal effects on different matter representations generated by gauge interactions at lower scales, as well as the charged LFV induced in Type-1 see-saw models of neutrino masses. We identify the different mechanisms that control the relic DM density in the various GUT models, and contrast their LFV and LHC signatures. The SU(5) and 4-2-2 models offer good detection prospects both at the LHC and in LFV searches, though with different LSP compositions, and the SU(5) and FSU(5) models offer LFV within the current reach. The 4-2-2 model allows chargino and gluino coannihilations with neutralinos, and the former offer good detection prospects for both the LHC and LFV, while gluino coannihilations lead to lower LFV rates. Our results indicate that LFV is a powerful tool that complements LHC and DM searches, providing significant insights into the sparticle spectra and neutrino mass parameters in different models.
If observed, charged lepton flavour violation is a clear sign of new physics - beyond the Standard Model minimally extended to accommodate neutrino oscillation data. We briefly review several extensions of the Standard Model which could potentially give rise to observable signals, also emphasising the r^ole of charged lepton flavour violation in probing such new physics models.
We consider a two-Higgs-doublet extension of the Standard Model, with three right-handed neutrino singlets and the seesaw mechanism, wherein all the Yukawa-coupling matrices are lepton flavour-diagonal and lepton flavour violation is soft, originating solely in the non-flavour-diagonal Majorana mass matrix of the right-handed neutrinos. We consider the limit $m_R to infty$ of this model, where $m_R$ is the seesaw scale. We demonstrate that there is a region in parameter space where the branching ratios of all five charged-lepton decays $ell_1^- to ell_2^- ell_3^+ ell_3^-$ are close to their experimental upper bounds, while the radiative decays $ell_1^- to ell_2^- gamma$ are invisible because their branching ratios are suppressed by $m_R^{-4}$. We also consider the anomalous magnetic moment of the muon and show that in our model the contributions from the extra scalars, both charged and neutral, can remove the discrepancy between its experimental and theoretical values.