No Arabic abstract
We explore possible signatures for charged lepton flavour violation (LFV), sparticle discovery at the LHC and dark matter (DM) searches in grand unified theories (GUTs) based on SU(5), flipped SU(5) (FSU(5)) and SU(4)$_c times $SU(2)$_L times $SU(2)$_R$ (4-2-2). We assume that soft supersymmetry-breaking terms preserve the group symmetry at some high input scale, and focus on the non-universal effects on different matter representations generated by gauge interactions at lower scales, as well as the charged LFV induced in Type-1 see-saw models of neutrino masses. We identify the different mechanisms that control the relic DM density in the various GUT models, and contrast their LFV and LHC signatures. The SU(5) and 4-2-2 models offer good detection prospects both at the LHC and in LFV searches, though with different LSP compositions, and the SU(5) and FSU(5) models offer LFV within the current reach. The 4-2-2 model allows chargino and gluino coannihilations with neutralinos, and the former offer good detection prospects for both the LHC and LFV, while gluino coannihilations lead to lower LFV rates. Our results indicate that LFV is a powerful tool that complements LHC and DM searches, providing significant insights into the sparticle spectra and neutrino mass parameters in different models.
We study lepton flavour violating decays of neutralinos and sleptons within the Minimal Supersymmetric Standard Model, assuming two and three generation mixings in the slepton sector. We take into account the most recent bounds on flavour violating rare lepton decays. Taking the SPS1a scenario as an example, we show that some of the lepton flavour violating branching ratios of neutralinos and sleptons can be sizable (~ 5-10%). We study the impact of the lepton flavour violating neutralino and slepton decays on the di-lepton mass distributions measured at LHC. We find that they can result in novel and characteristic edge structures in the distributions. In particular, double-edge structures can appear in the e tau and mu tau mass spectra if ~tau_1 is the lightest slepton. The appearance of these remarkable structures provides a powerful test of supersymmetric lepton flavour violation at LHC.
Right-handed neutrinos with MeV to GeV mass are very promising candidates for dark matter (DM). Not only can they solve the missing satellite puzzle, the cusp-core problem of inner DM density profiles, and the too-big-to fail problem, {it i.e.} that the unobserved satellites are too big to not have visible stars, but they can also account for the Standard Model (SM) neutrino masses at one loop. We perform a comprehensive study of the right-handed neutrino parameter space and impose the correct observed relic density and SM neutrino mass differences and mixings. We find that the DM masses are in agreement with bounds from big-bang nucleosynthesis, but that these constraints induce sizeable DM couplings to the charged SM leptons. We then point out that previously overlooked limits from current and future lepton flavour violation experiments such as MEG and SINDRUM heavily constrain the allowed parameter space. Since the DM is leptophilic, we also investigate electron recoil as a possible direct detection signal, in particular in the XENON1T experiment. We find that despite the large coupling and low backgrounds, the energy thresholds are still too high and the predicted cross sections too low due to the heavy charged mediator, whose mass is constrained by LEP limits.
If grand unification is real, searches for baryon-number violation should be included on the list of observables that may reveal information regarding the origin of neutrino masses. Making use of an effective-operator approach and assuming that nature is SU(5) invariant at very short distances, we estimate the consequences of different scenarios that lead to light Majorana neutrinos for low-energy phenomena that violate baryon number minus lepton number (B-L) by two (or more) units, including neutron-antineutron oscillations and B-L violating nucleon decays. We find that, among all possible effective theories of lepton-number violation that lead to nonzero neutrino masses, only a subset is, broadly speaking, consistent with grand unification.
A pseudo-Nambu-Goldstone boson (pNGB) is an attractive candidate for dark matter (DM) due to the simple evasion of the current severe limits of DM direct detection experiments. One of the pNGB DM models has been proposed based on a {it gauged} $U(1)_{B-L}$ symmetry. The pNGB has long enough lifetime to be a DM and thermal relic abundance of pNGB DM can be fit with the observed value against the constraints on the DM decays from the cosmic-ray observations. The pNGB DM model can be embedded into an $SO(10)$ pNGB DM model in the framework of an $SO(10)$ grand unified theory, whose $SO(10)$ is broken to the Pati-Salam gauge group at the unified scale, and further to the Standard Model gauge group at the intermediate scale. Unlike the previous pNGB DM model, the parameters such as the gauge coupling constants of $U(1)_{B-L}$, the kinetic mixing parameter of between $U(1)_Y$ and $U(1)_{B-L}$ are determined by solving the renormalization group equations for gauge coupling constants with appropriate matching conditions. From the constraints of the DM lifetime and gamma-ray observations, the pNGB DM mass must be less than $mathcal{O}(100)$$,$GeV. We find that the thermal relic abundance can be consistent with all the constraints when the DM mass is close to half of the CP even Higg masses.
We revisit MSSM scenarios with light neutralino as a dark matter candidate in view of the latest LHC and dark matter direct and indirect detection experiments. We show that scenarios with a very light neutralino (~ 10 GeV) and a scalar bottom quark close in mass, can satisfy all the available constraints from LEP, Tevatron, LHC, flavour and low energy experiments and provide solutions in agreement with the bulk of dark matter direct detection experiments, and in particular with the recent CDMS results.