No Arabic abstract
We demonstrate that evolutions of three-dimensional, strongly non-linear gravitational waves can be followed in numerical relativity, hence allowing many interesting studies of both fundamental and observational consequences. We study the evolution of time-symmetric, axisymmetric {it and} non-axisymmetric Brill waves, including waves so strong that they collapse to form black holes under their own self-gravity. The critical amplitude for black hole formation is determined. The gravitational waves emitted in the black hole formation process are compared to those emitted in the head-on collision of two Misner black holes.
A numerical-relativity calculation yields in general a solution of the Einstein equations including also a radiative part, which is in practice computed in a region of finite extent. Since gravitational radiation is properly defined only at null infinity and in an appropriate coordinate system, the accurate estimation of the emitted gravitational waves represents an old and non-trivial problem in numerical relativity. A number of methods have been developed over the years to extract the radiative part of the solution from a numerical simulation and these include: quadrupole formulas, gauge-invariant metric perturbations, Weyl scalars, and characteristic extraction. We review and discuss each method, in terms of both its theoretical background as well as its implementation. Finally, we provide a brief comparison of the various methods in terms of their inherent advantages and disadvantages.
After a short review of prominent properties of gravitational waves and the newly born gravitational astronomy, we focus on theoretical aspects. Analytic approximation methods in general relativity have played a crucial role in the recent discoveries of gravitational waves. They are used to build theoretical template banks for searching and analyzing the signals in the ground-based detectors LIGO and Virgo, and, further ahead, space-based LISA-like detectors. In particular, the post-Newtonian approximation describes with high accuracy the early inspiral of compact binary systems, made of black holes or neutron stars. It mainly consists of extending the Einstein quadrupole formula by a series of relativistic corrections up to high order. The compact objects are modelled by point masses with spins. The practical calculations face difficult problems of divergences, which have been solved thanks to the dimensional regularization. In the last rotations before the merger, the finite size effects and the internal structure of neutron stars (notably the internal equation of state) affect the evolution of the orbit and the emission of gravitational waves. We describe these effects within a simple Newtonian model.
Gravitational-wave sources offer us unique testbeds for probing strong-field, dynamical and nonlinear aspects of gravity. In this chapter, we give a brief overview of the current status and future prospects of testing General Relativity with gravitational waves. In particular, we focus on three theory-agnostic tests (parameterized tests, inspiral-merger-ringdown consistency tests, and gravitational-wave propagation tests) and explain how one can apply such tests to example modified theories of gravity. We conclude by giving some open questions that need to be resolved to carry out more accurate tests of gravity with gravitational waves.
We present the first numerical relativity waveforms for binary black hole mergers produced using spectral methods that show both the displacement and the spin memory effects. Explicitly, we use the SXS Collaborations $texttt{SpEC}$ code to run a Cauchy evolution of a binary black hole merger and then extract the gravitational wave strain using $texttt{SpECTRE}$s version of a Cauchy-characteristic extraction. We find that we can accurately resolve the strains traditional $m=0$ memory modes and some of the $m ot=0$ oscillatory memory modes that have previously only been theorized. We also perform a separate calculation of the memory using equations for the Bondi-Metzner-Sachs charges as well as the energy and angular momentum fluxes at asymptotic infinity. Our new calculation uses only the gravitational wave strain and two of the Weyl scalars at infinity. Also, this computation shows that the memory modes can be understood as a combination of a memory signal throughout the binarys inspiral and merger phases, and a quasinormal mode signal near the ringdown phase. Additionally, we find that the magnetic memory, up to numerical error, is indeed zero as previously conjectured. Lastly, we find that signal-to-noise ratios of memory for LIGO, the Einstein Telescope (ET), and the Laser Interferometer Space Antenna (LISA) with these new waveforms and new memory calculation are larger than previous expectations based on post-Newtonian or Minimal Waveform models.
Gravitational waves deliver information in exquisite detail about astrophysical phenomena, among them the collision of two black holes, a system completely invisible to the eyes of electromagnetic telescopes. Models that predict gravitational wave signals from likely sources are crucial for the success of this endeavor. Modeling binary black hole sources of gravitational radiation requires solving the Eintein equations of General Relativity using powerful computer hardware and sophisticated numerical algorithms. This proceeding presents where we are in understanding ground-based gravitational waves resulting from the merger of black holes and the implications of these sources for the advent of gravitational-wave astronomy.