No Arabic abstract
We report measurements of the resistivity in the ferromagnetic state of epitaxial thin films of La_{1-x}Ca_{x}MnO_{3} and the low temperature specific heat of a polycrystalline La_{0.8}Ca_{0.2}MnO_{3}. The resistivity below 100 K can be well fitted by rho - rho_{o} = E omega_{s}/sinh^{2}(hbar omega_{s}/2k_{B}T) with hbar omega_{s}/k_{B} simeq 100 K and E being a constant. Such behavior is consistent with small-polaron coherent motion which involves a relaxation due to a soft optical phonon mode. The specific heat data also suggest the existence of such a phonon mode. The present results thus provide evidence for small-polaron metallic conduction in the ferromagnetic state of manganites.
Ferromagnetic (FM) manganites, a group of likely half-metallic oxides, are of special interest not only because they are a testing ground of the classical doubleexchange interaction mechanism for the colossal magnetoresistance, but also because they exhibit an extraordinary arena of emergent phenomena. These emergent phenomena are related to the complexity associated with strong interplay between charge, spin, orbital, and lattice. In this review, we focus on the use of inelastic neutron scattering to study the spin dynamics, mainly the magnon excitations in this class of FM metallic materials. In particular, we discussed the unusual magnon softening and damping near the Brillouin zone boundary in relatively narrow band compounds with strong Jahn-Teller lattice distortion and charge/orbital correlations. The anomalous behaviors of magnons in these compounds indicate the likelihood of cooperative excitations involving spin, lattice, as well as orbital degrees of freedom.
What happens to ferromagnetism at the surfaces and interfaces of manganites? With the competition between charge, spin, and orbital degrees of freedom, it is not surprising that the surface behavior may be profoundly different than that of the bulk. Using a powerful combination of two surface probes, tunneling and polarized x-ray interactions, this paper reviews our work on the nature of the electronic and magnetic states at manganite surfaces and interfaces. The general observation is that ferromagnetism is not the lowest energy state at the surface or interface, which results in a suppression or even loss of ferromagnetic order at the surface. Two cases will be discussed ranging from the surface of the quasi-2D bilayer manganite (La$_{2-2x}$Sr$_{1+2x}$Mn$_2$O$_7$) to the 3D Perovskite (La$_{2/3}$Sr$_{1/3}$MnO$_3$)/SrTiO$_3$ interface. For the bilayer manganite, that is, ferromagnetic and conducting in the bulk, these probes present clear evidence for an intrinsic insulating non-ferromagnetic surface layer atop adjacent subsurface layers that display the full bulk magnetization. This abrupt intrinsic magnetic interface is attributed to the weak inter-bilayer coupling native to these quasi-two-dimensional materials. This is in marked contrast to the non-layered manganite system (La$_{2/3}$Sr$_{1/3}$MnO$_3$/SrTiO$_3$), whose magnetization near the interface is less than half the bulk value at low temperatures and decreases with increasing temperature at a faster rate than the bulk.
The nature of the polarons in the optimally doped colossal magnetoresistive (CMR) materials La0.7Ba0.3MnO3 (LBMO) and La0.7Sr0.3MnO3 (LSMO) is studied by elastic and inelastic neutron scattering. In both materials, dynamic nanoscale polaron correlations develop abruptly in the ferromagnetic state. However, the polarons are not able to lock-in to the lattice and order, in contrast to the behavior of La0.7Ca0.3MnO3. Therefore ferromagnetic order in LBMO and LSMO survives their formation, explaining the conventional second order nature of the ferromagnetic--paramagnetic transition. Nevertheless, the results demonstrate that the fundamental mechanism of polaron formation is a universal feature of these ferromagnetic perovskite manganites.
High resolution spin waves measurements have been carried out in ferromagnetic (F) La(1-x)(Sr,Ca)xMnO3 with x(Sr)=0.15, 0.175, 0.2, 0.3 and x(Ca)=0.3. In all q-directions, close to the zone boundary, the spin wave spectra consist of several energy levels, with the same values in the metallic and the xapprox 1/8 ranges. Mainly the intensity varies, jumping from the lower energy levels determined in the xapprox 1/8 range to the higher energy ones observed in the metallic state. On the basis of a quantitative agreement found for x(Sr)=0.15 in a model of ordered 2D clusters, the spin wave anomalies of the metallic state can be interpreted in terms of quantized spin waves within the same 2D clusters, embedded in a 3D matrix.
We report on the optical properties of the hole-doped manganites La_0.7Ca_0.3MnO_3 and La_0.7Ca_0.3MnO_3. Transmission and reflection of thin films are measured in the infrared at temperatures from 10 - 150 K using Fourier-transform spectroscopy. The scattering rate and optical mass are obtained by fitting the far-infrared transmission to a Drude model. The scattering rate shows a T^2 dependence with temperature. The optical mass enhancement differs only slightly from specific heat results. In addition, we compare the infrared spectral weight to band structure calculations [M. Quijada et al., Phys. Rev. B 58, 16093 (1998)].