No Arabic abstract
The nature of the polarons in the optimally doped colossal magnetoresistive (CMR) materials La0.7Ba0.3MnO3 (LBMO) and La0.7Sr0.3MnO3 (LSMO) is studied by elastic and inelastic neutron scattering. In both materials, dynamic nanoscale polaron correlations develop abruptly in the ferromagnetic state. However, the polarons are not able to lock-in to the lattice and order, in contrast to the behavior of La0.7Ca0.3MnO3. Therefore ferromagnetic order in LBMO and LSMO survives their formation, explaining the conventional second order nature of the ferromagnetic--paramagnetic transition. Nevertheless, the results demonstrate that the fundamental mechanism of polaron formation is a universal feature of these ferromagnetic perovskite manganites.
A central line of inquiry in condensed matter science has been to understand how the competition between different states of matter give rise to emergent physical properties. Perhaps some of the most studied systems in this respect are the hole-doped LaMnO$_3$ perovskites, with interest in the past three decades being stimulated on account of their colossal magnetoresistance (CMR). However, phase segregation between ferromagnetic (FM) metallic and antiferromagnetic (AFM) insulating states, which itself is believed to be responsible for the colossal change in resistance under applied magnetic field, has until now prevented a full atomistic level understanding of the orbital ordered (OO) state at the optimally doped level. Here, through the detailed crystallographic analysis of the hole-doped phase diagram of a prototype system, we show that the superposition of two distinct lattice modes gives rise to a striped structure of OO Jahn-Teller active Mn$^{3+}$ and charge disordered (CD) Mn$^{3.5+}$ layers in a 1:3 ratio. This superposition leads to an exact cancellation of the Jahn-Teller-like oxygen atom displacements in the CD layers only at the 3/8th doping level, coincident with the maximum CMR response of the manganties. Furthermore, the periodic striping of layers containing Mn$^{3.5+}$, separated by layers of fully ordered Mn$^{3+}$, provides a natural mechanism though which long range OO can melt, a prerequisite for the emergence of the FM conducting state. The competition between insulating and conducting states is seen to be a key feature in understanding the properties in highly correlated electron systems, many of which, such as the CMR and high temperature superconductivity, only emerge at or near specific doping values.
We report measurements of the resistivity in the ferromagnetic state of epitaxial thin films of La_{1-x}Ca_{x}MnO_{3} and the low temperature specific heat of a polycrystalline La_{0.8}Ca_{0.2}MnO_{3}. The resistivity below 100 K can be well fitted by rho - rho_{o} = E omega_{s}/sinh^{2}(hbar omega_{s}/2k_{B}T) with hbar omega_{s}/k_{B} simeq 100 K and E being a constant. Such behavior is consistent with small-polaron coherent motion which involves a relaxation due to a soft optical phonon mode. The specific heat data also suggest the existence of such a phonon mode. The present results thus provide evidence for small-polaron metallic conduction in the ferromagnetic state of manganites.
By resonant x-ray scattering at the Mn K-edge on La7/8Sr1/8MnO3, we show that an orbital polaron lattice (OPL) develops at the metal-insulator transition of this compound. This orbital reordering explains consistently the unexpected coexistence of ferromagnetic and insulating properties at low temperatures, the quadrupling of the lattice structure parallel to the MnO2-planes, and the observed polarization and azimuthal dependencies. The OPL is a clear manifestation of strong orbital-hole interactions, which play a crucial role for the colossal magnetoresistance effect and the doped manganites in general.
Using the Lanczos method in linear chains we study the double exchange model in the low concentration limit, including an antiferromagnetic super-exchange K. In the strong coupling limit we find that the ground state contains ferromagnetic polarons whose length is very sensitive to the value of K/t. We investigate the dispersion relation, the trapping by impurities, and the interaction between these polarons. As the overlap between polarons increases, by decreasing K/t, the effective interaction between them changes from antiferromagnetic to ferromagnetic. The scaling to the thermodynamic limit suggests an attractive interaction in the strong coupling regime (J_h > t) and no binding in the weak limit (J_h simeq t).
La0.7Ba0.3MnO3 (LBMO):Agx (x = 0.0, 0.1, 0.2, 0.3, and 0.4) composites are synthesized by solid-state reaction route, the final sintering temperatures are varied from 1300 (LBMO1300Ag) to 1400 0C (LBMO1400Ag), and their physical properties are compared as a function of temperature and Ag content. All samples are crystallized in single phase accompanied by some distortion in main structural phase peaks at higher angles with increase in silver content. Though the lattice parameters (a, c) decrease, the b increases slightly with an increase in Ag content. The scanning electron micrographs (SEM) showed better grains morphology in terms of size and diffusion of grain boundaries with an increase in Ag content. In both LBMO1300Ag and LBMO1400Ag series the metal insulator transition (TMI) and accompanied paramagnetic-ferromagnetic transition (TC) temperatures are decreased with increase in Ag content. The sharpness of MI transition, defined by temperature coefficient of resistance (TCR), is improved for Ag added samples. At a particular content of Ag(0.3), the TMI and TC are tuned to 300K and maximum magneto-resistance at 7Tesla applied field (MR7T) of up to 55% is achieved at this temperature, which is more than double to that as observed for pure samples of the both 1300 and 1400 0C series at same temperature. The MR7T is further increased to above 60% for LBMOAg(0.4) samples, but is at 270K. The MR7T is measured at varying temperatures of 5, 100, 200, 300, and 400K in varying fields from +/- 7 Tesla, which exhibits U and V type shapes. Summarily, the addition of Ag in LBMO improves significantly the morphology of the grains and results in better physical properties of the parent manganite system.