Magnetotransport properties of ferromagnetic semiconductor (Ga,Mn)As have been investigated. Measurements at low temperature (50 mK) and high magnetic field (<= 27 T) have been employed in order to determine the hole concentration p = 3.5x10^20 cm ^-3 of a metallic (Ga0.947Mn0.053)As layer. The analysis of the temperature and magnetic field dependencies of the resistivity in the paramagnetic region was performed with the use of the above value of p, which gave the magnitude of p-d exchange energy |N0beta | ~ 1.5 eV.
We study the effects of growth temperature, Ga:As ratio and post-growth annealing procedure on the Curie temperature, Tc, of (Ga,Mn)As layers grown by molecular beam epitaxy. We achieve the highest Tc values for growth temperatures very close to the 2D-3D phase boundary. The increase in Tc, due to the removal of interstitial Mn by post growth annealing, is counteracted by a second process which reduces Tc and which is more effective at higher annealing temperatures. Our results show that it is necessary to optimize the growth parameters and post growth annealing procedure to obtain the highest Tc.
We report on a monotonic reduction of Curie temperature in dilute ferromagnetic semiconductor (Ga,Mn)As upon a well controlled chemical-etching/oxidizing thinning from 15 nm down to complete removal of the ferro- magnetic response. The effect already starts at the very beginning of the thinning process and is accompanied by the spin reorientation transition of the in-plane uniaxial anisotropy. We postulate that a negative gradient along the growth direction of self-compensating defects (Mn interstitial) and the presence of surface donor traps gives quantitative account on these effects within the p-d mean field Zener model with adequate mod- ifications to take a nonuniform distribution of holes and Mn cations into account. The described here effects are of practical importance for employing thin and ultrathin layers of (Ga,Mn)As or relative compounds in concept spintronics devices, like resonant tunneling devices in particular.
A new type of (Ga,Mn)As microstructures with laterally confined electronic and magnetic properties has been realized by growing (Ga,Mn)As films on [1-10]-oriented ridge structures with (113)A sidewalls and (001) top layers prepared on GaAs(001) substrates. The temperature- and field-dependent magnetotransport data of the overgrown structures are compared with those obtained from planar reference samples revealing the coexistence of electronic and magnetic properties specific for (001) and (113)A (Ga,Mn)As on a single sample.
The magnetic properties of dilute magnetic semiconductors (DMS) are calculated from first-principles by mapping the ab initio results on a classical Heisenberg model. It is found that the range of the exchange interaction in (Ga, Mn)N is very short ranged due to the exponential decay of the impurity wave function in the gap. Curie temperatures (Tc) of DMS are calculated by using the Monte Carlo method. It is found that the Tc values of (Ga, Mn)N are very low since, due to the short ranged interaction, percolation of the ferromagnetic coupling is difficult to achieve for small concentrations.
Investigation of magnetic materials using the first-order magneto-optical Kerr effects (MOKE) is well established and is frequently used in the literature. On the other hand, the utilization of the second-order (or quadratic) magneto-optical (MO) effects for the material research is rather rare. This is due to the small magnitude of quadratic MO signals and the fact that the signals are even in magnetization (i.e., they do not change a sign when the magnetization orientation is flipped), which makes it difficult to separate second-order MO signals from various experimental artifacts. In 2005 a giant quadratic MO effect - magnetic linear dichroism (MLD) - was observed in the ferromagnetic semiconductor (Ga,Mn)As. This discovery not only provided a new experimental tool for the investigation of in-plane magnetization dynamics in (Ga,Mn)As using light at normal incidence, but it also motivated the development of experimental techniques for the measurement of second-order MO effects in general. In this paper we compare four different experimental techniques that can be used to measure MLD and to separate it from experimental artifacts. We show that the most reliable results are obtained when the harmonic dependence of MLD on a mutual orientation of magnetization and light polarization plane is used together with the in-situ rotation of the sample followed by the magnetic field-induced rotation of magnetization. Using this technique we measure the MLD spectra of (Ga,Mn)As in a broad spectral range from 0.1 eV to 2.7 eV and we observe that MLD has a comparable magnitude as polar MOKE signals in this material.
T. Omiya
,F. Matsukura
,T. Dietl
.
(1999)
.
"Magnetotransport properties of (Ga,Mn)As investigated at low temperature and high magnetic field"
.
Tadashi Omiya
هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا