Do you want to publish a course? Click here

(Ga,Mn)As on patterned GaAs(001) substrates: Growth and magnetotransport

81   0   0.0 ( 0 )
 Added by Wolfgang Limmer
 Publication date 2006
  fields Physics
and research's language is English




Ask ChatGPT about the research

A new type of (Ga,Mn)As microstructures with laterally confined electronic and magnetic properties has been realized by growing (Ga,Mn)As films on [1-10]-oriented ridge structures with (113)A sidewalls and (001) top layers prepared on GaAs(001) substrates. The temperature- and field-dependent magnetotransport data of the overgrown structures are compared with those obtained from planar reference samples revealing the coexistence of electronic and magnetic properties specific for (001) and (113)A (Ga,Mn)As on a single sample.



rate research

Read More

General expressions for the longitudinal and transverse resistivities of single-crystalline cubic and tetragonal ferromagnets are derived from a series expansion of the resistivity tensor with respect to the magnetization orientation. They are applied to strained (Ga,Mn)As films, grown on (001)- and (113)A-oriented GaAs substrates, where the resistivities are theoretically and experimentally studied for magnetic fields rotated within various planes parallel and perpendicular to the sample surface. We are able to model the measured angular dependences of the resistivities within the framework of a single ferromagnetic domain, calculating the field-dependent orientation of the magnetization by numerically minimizing the free-enthalpy density. Angle-dependent magnetotransport measurements are shown to be a powerful tool for probing both anisotropic magnetoresistance and magnetic anisotropy. The anisotropy parameters of the (Ga,Mn)As films inferred from the magnetotransport measurements agree with those obtained by ferromagnetic resonance measurements within a factor of two.
95 - Lai Wang , Xiao Meng , Di Yang 2016
In metal organic vapor phase epitaxy of GaN, the growth mode is sensitive to reactor temperature. In this study, V-pit-shaped GaN has been grown on normal c-plane cone-patterned sapphire substrate by decreasing the growth temperature of high-temperature-GaN to around 950 oC, which leads to the 3-dimensional growth of GaN. The so-called WM well describes the shape that the bottom of GaN V-pit is just right over the top of sapphire cone, and the regular arrangement of V-pits follows the patterns of sapphire substrate strictly. Two types of semipolar facets (1101) and (1122) expose on sidewalls of V-pits. Furthermore, by raising the growth temperature to 1000 oC, the growth mode of GaN can be transferred to 2-demonsional growth. Accordingly, the size of V-pits becomes smaller and the area of c-plane GaN becomes larger, while the total thickness of GaN keeps almost unchanged during this process. As long as the 2-demonsional growth lasts, the V-pits will disappear and only flat c-plane GaN remains. This means the area ratio of c-plane and semipolar plane GaN can be controlled by the duration time of 2-demonsional growth.
358 - Matthieu Jamet 2009
Changing the morphology of the growing surface and the nature of residual impurities in (Ge,Mn) layers - by using different substrates - dramatically changes the morphology of the ferromagnetic Mn-rich inclusions and the magnetotransport properties. We obtained p-type layers with nanocolumns, either parallel or entangled, and n-type layers with spherical clusters. Holes exhibit an anomalous Hall effect, and electrons exhibit a tunneling magnetoresistance, both with a clear dependence on the magnetization of the Mn-rich inclusions; holes exhibit orbital MR, and electrons show only the normal Hall effect, and an additional component of magnetoresistance due to weak localization, all three being independent of the magnetic state of the Mn rich inclusions. Identified mechanisms point to the position of the Fermi level of the Mn-rich material with respect to the valence band of germanium as a crucial parameter in such hybrid layers.
234 - T. Omiya , F. Matsukura , T. Dietl 1999
Magnetotransport properties of ferromagnetic semiconductor (Ga,Mn)As have been investigated. Measurements at low temperature (50 mK) and high magnetic field (<= 27 T) have been employed in order to determine the hole concentration p = 3.5x10^20 cm ^-3 of a metallic (Ga0.947Mn0.053)As layer. The analysis of the temperature and magnetic field dependencies of the resistivity in the paramagnetic region was performed with the use of the above value of p, which gave the magnitude of p-d exchange energy |N0beta | ~ 1.5 eV.
176 - M. Adell , J. Kanski , L. Ilver 2004
The magnetic and transport properties of (GaMn)As are known to be influenced by postgrowth annealing, and it is generally accepted that these modifications are due to outdiffusion of Mn interstitials. We show that the annealing-induced modifications are strongly accelerated if the treatment is carried out under As capping. This means that the modification rate is not limited by the diffusion process, but rather by the surface trapping of the diffusing species.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا