Do you want to publish a course? Click here

High Precision Magnetic Linear Dichroism Measurements in (Ga,Mn)As

445   0   0.0 ( 0 )
 Added by Petr Nemec
 Publication date 2012
  fields Physics
and research's language is English




Ask ChatGPT about the research

Investigation of magnetic materials using the first-order magneto-optical Kerr effects (MOKE) is well established and is frequently used in the literature. On the other hand, the utilization of the second-order (or quadratic) magneto-optical (MO) effects for the material research is rather rare. This is due to the small magnitude of quadratic MO signals and the fact that the signals are even in magnetization (i.e., they do not change a sign when the magnetization orientation is flipped), which makes it difficult to separate second-order MO signals from various experimental artifacts. In 2005 a giant quadratic MO effect - magnetic linear dichroism (MLD) - was observed in the ferromagnetic semiconductor (Ga,Mn)As. This discovery not only provided a new experimental tool for the investigation of in-plane magnetization dynamics in (Ga,Mn)As using light at normal incidence, but it also motivated the development of experimental techniques for the measurement of second-order MO effects in general. In this paper we compare four different experimental techniques that can be used to measure MLD and to separate it from experimental artifacts. We show that the most reliable results are obtained when the harmonic dependence of MLD on a mutual orientation of magnetization and light polarization plane is used together with the in-situ rotation of the sample followed by the magnetic field-induced rotation of magnetization. Using this technique we measure the MLD spectra of (Ga,Mn)As in a broad spectral range from 0.1 eV to 2.7 eV and we observe that MLD has a comparable magnitude as polar MOKE signals in this material.



rate research

Read More

Magnetic linear dichroism and birefringence in (Ga,Mn)As epitaxial layers is investigated by measuring the polarization plane rotation of reflected linearly polarized light when magnetization lies in the plane of the sample. We report on the spectral dependence of the rotation and ellipticity angles in a broad energy range of 0.12-2.7 eV for a series of optimized samples covering a wide range on Mn-dopings and Curie temperatures and find a clear blue shift of the dominant peak at energy exceeding the host material band gap. These results are discussed in the general context of the GaAs host band structure and also within the framework of the k.p and mean-field kinetic-exchange model of the (Ga,Mn)As band structure. We find a semi-quantitative agreement between experiment and theory and discuss the role of disorder-induced non-direct transitions on magneto-optical properties of (Ga,Mn)As.
The magnetic properties of as-grown Ga$_{1-x}$Mn$_{x}$As have been investigated by the systematic measurements of temperature and magnetic field dependent soft x-ray magnetic circular dichroism (XMCD). The {it intrinsic} XMCD intensity at high temperatures obeys the Curie-Weiss law, but residual spin magnetic moment appears already around 100 K, significantly above Curie temperature ($T_C$), suggesting that short-range ferromagnetic correlations are developed above $T_C$. The present results also suggest that antiferromagnetic interaction between the substitutional and interstitial Mn (Mn$_{int}$) ions exists and that the amount of the Mn$_{int}$ affects $T_C$.
We study the effects of growth temperature, Ga:As ratio and post-growth annealing procedure on the Curie temperature, Tc, of (Ga,Mn)As layers grown by molecular beam epitaxy. We achieve the highest Tc values for growth temperatures very close to the 2D-3D phase boundary. The increase in Tc, due to the removal of interstitial Mn by post growth annealing, is counteracted by a second process which reduces Tc and which is more effective at higher annealing temperatures. Our results show that it is necessary to optimize the growth parameters and post growth annealing procedure to obtain the highest Tc.
Atomic Force Microscopy and Grazing incidence X-ray diffraction measurements have revealed the presence of ripples aligned along the $[1bar{1}0]$ direction on the surface of (Ga,Mn)As layers grown on GaAs(001) substrates and buffer layers, with periodicity of about 50 nm in all samples that have been studied. These samples show the strong symmetry breaking uniaxial magnetic anisotropy normally observed in such materials. We observe a clear correlation between the amplitude of the surface ripples and the strength of the uniaxial magnetic anisotropy component suggesting that these ripples might be the source of such anisotropy.
251 - C. King , J. Zemen , K. Olejnik 2010
We present an experimental and theoretical study of magnetocrystalline anisotropies in arrays of bars patterned lithographically into (Ga,Mn)As epilayers grown under compressive lattice strain. Structural properties of the (Ga,Mn)As microbars are investigated by high-resolution X-ray diffraction measurements. The experimental data, showing strong strain relaxation effects, are in good agreement with finite element simulations. SQUID magnetization measurements are performed to study the control of magnetic anisotropy in (Ga,Mn)As by the lithographically induced strain relaxation of the microbars. Microscopic theoretical modeling of the anisotropy is performed based on the mean-field kinetic-exchange model of the ferromagnetic spin-orbit coupled band structure of (Ga,Mn)As. Based on the overall agreement between experimental data and theoretical modeling we conclude that the micropatterning induced anisotropies are of the magnetocrystalline, spin-orbit coupling origin.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا