No Arabic abstract
Quantum tunneling of domain walls out of an impurity potential in a mesoscopic ferromagnetic sample is investigated. Using improved expressions for the domain wall mass and for the pinning potential, we find that the cross-over temperature between thermal activation and quantum tunneling is of a different functional form than found previously. In materials like Ni or YIG, the crossover temperatures are around 5 mK. We also find that the WKB exponent is typically two orders of magnitude larger than current estimates. The sources for these discrepancies are discussed, and precise estimates for the transition from three-dimensional to one-dimensional magnetic behavior of a wire are given. The cross-over temperatures from thermal to quantum transitions and tunneling rates are calculated for various materials and sample sizes.
We consider a domain wall in the mesoscopic quasi-one-dimensional sample (wire or stripe) of weakly anisotropic two-sublattice antiferromagnet, and estimate the probability of tunneling between two domain wall states with different chirality. Topological effects forbid tunneling for the systems with half-integer spin S of magnetic atoms which consist of odd number of chains N. External magnetic field yields an additional contribution to the Berry phase, resulting in the appearance of two different tunnel splittings in any experimental setup involving a mixture of odd and even N, and in oscillating field dependence of the tunneling rate with the period proportional to 1/N.
We studied the quantum dynamics of ferromagnetic domain walls (topological kink-type solitons) in one dimensional ferromagnetic spin chains. We show that the tunneling probability does not depend on the number of spins in a domain wall; thus, this probability can be large even for a domain wall containing a large number of spins. We also predict that there is a strong interplay between the tunneling of a wall from one lattice site to another (tunneling of the kink coordinate) and the tunneling of the kink topological charge (so-called chirality). Both of these elementary processes are suppressed for kinks in one-dimensional ferromagnets with half-integer spin. The dispersion law (i.e., the domain wall energy versus momentum) is essentially different for chains with either integer or half-integer spins. The predicted quantum effects could be observed for mesoscopic magnetic structures, e.g., chains of magnetic clusters, large-spin molecules, or nanosize magnetic dots.
We present a quantitative investigation of magnetic domain wall pinning in thin magnets with perpendicular anisotropy. A self-consistent description exploiting the universal features of the depinning and thermally activated sub-threshold creep regimes observed in the field driven domain wall velocity, is used to determine the effective pinning parameters controlling the domain wall dynamics: the effective height of pinning barriers, the depinning threshold, and the velocity at depinning. Within this framework, the analysis of results published in the literature allows for a quantitative comparison of pinning properties for a set of magnetic materials in a wide temperature range. On the basis of scaling arguments, the microscopic parameters controlling the pinning: the correlation length of pinning, the collectively pinned domain wall length (Larkin length) and the strength of pinning disorder, are estimated from the effective pinning and the micromagnetic parameters. The analysis of thermal effects reveals a crossover between different pinning length scales and strengths at low reduced temperature.
In a two or three dimensional ferromagnetic XXZ model, a low energy excitation mode above a magnetic domain wall is gapless, whereas all of the usual spin wave excitations moving around the whole crystal are gapful. Although this surprising fact was already proved in a mathematically rigorous manner, the gapless excitations have not yet been detected experimentally. For this issue, we show theoretically that the gapless excitations appear as the dynamical fluctuations of the experimental observable, magnetoresistance, in a ferromagnetic wire. We also discuss other methods (e.g., ferromagnetic resonance and neutron scattering) to detect the gapless excitations experimentally.
The experimental observation of quantum phenomena in mechanical degrees of freedom is difficult, as the systems become linear towards low energies and the quantum limit, and thus reside in the correspondence limit. Here we investigate how to access quantum phenomena in flexural nanomechanical systems which are strongly deflected by a voltage. Near a metastable point, one can achieve a significant nonlinearity in the electromechanical potential at the scale of zero point energy. The system could then escape from the metastable state via macroscopic quantum tunneling (MQT). We consider two model systems suspended atop a voltage gate, namely, a graphene sheet, and a carbon nanotube. We find that the experimental demonstration of the phenomenon is currently possible but demanding, since the MQT crossover temperatures fall in the milli-Kelvin range. A carbon nanotube is suggested as the most promising system.