It has been shown by several authors that a certain class of composite operators with many fields and gradients endangers the stability of nontrivial fixed points in 2+eps expansions for various models. This problem is so far unresolved. We investigate it in the N-vector model in an 1/N-expansion. By establishing an asymptotic naive addition law for anomalous dimensions we demonstrate that the first orders in the 2+eps expansion can lead to erroneous interpretations for high--gradient operators. While this makes us cautious against over--interpreting such expansions (either 2+eps or 1/N), the stability problem in the N-vector model persists also in first order in 1/N below three dimensions.
We revisit the effects of short-ranged random quenched disorder on the universal scaling properties of the classical $N$-vector model with cubic anisotropy. We set up the nonconserved relaxational dynamics of the model, and study the universal dynamic scaling near the second order phase transition. We extract the critical exponents and the dynamic exponent in a one-loop dynamic renormalisation group calculation with short-ranged isotropic disorder. We show that the dynamics near a critical point is generically slower when the quenched disorder is relevant than when it is not, independent of whether the pure model is isotropic or cubic anisotropic. We demonstrate the surprising thresholdless instability of the associated universality class due to perturbations from rotational invariance breaking quenched disorder-order parameter coupling, indicating breakdown of dynamic scaling. We speculate that this may imply a novel first order transition in the model, induced by a symmetry-breaking disorder.
Using an Environmentally Friendly Renormalization Group we derive an ab initio universal scaling form for the equation of state for the O(N) model, y=f(x), that exhibits all required analyticity properties in the limits $xto 0$, $xtoinfty$ and $xto -1$. Unlike current methodologies based on a phenomenological scaling ansatz the scaling function is derived solely from the underlying Landau-Ginzburg-Wilson Hamiltonian and depends only on the three Wilson functions $gamma_lambda$, $gamma_phi$ and $gamma_{phi^2}$ which exhibit a non-trivial crossover between the Wilson-Fisher fixed point and the strong coupling fixed point associated with the Goldstone modes on the coexistence curve. We give explicit results for N=2, 3 and 4 to one-loop order and compare with known results.
We solve analytically the renormalization-group equation for the potential of the O(N)-symmetric scalar theory in the large-N limit and in dimensions 2<d<4, in order to look for nonperturbative fixed points that were found numerically in a recent study. We find new real solutions with singularities in the higher derivatives of the potential at its minimum, and complex solutions with branch cuts along the negative real axis.
The critical behaviour of the O(n)-symmetric model with two n-vector fields is studied within the field-theoretical renormalization group approach in a D=4-2 epsilon expansion. Depending on the coupling constants the beta-functions, fixed points and critical exponents are calculated up to the one- and two-loop order, resp. (eta in two- and three-loop order). Continuous lines of fixed points and O(n)*O(2) invariant discrete solutions were found. Apart from already known fixed points two new ones were found. One agrees in one-loop order with a known fixed point, but differs from it in two-loop order.
We demonstrate using direct numerical diagonalization and extrapolation methods that boundary conditions have a profound effect on the bulk properties of a simple $Z(N)$ model for $N ge 3$ for which the model hamiltonian is non-hermitian. For $N=2$ the model reduces to the well known quantum Ising model in a transverse field. For open boundary conditions the $Z(N)$ model is known to be solved exactly in terms of free parafermions. Once the ends of the open chain are connected by considering the model on a ring, the bulk properties, including the ground-state energy per site, are seen to differ dramatically with increasing $N$. Other properties, such as the leading finite-size corrections to the ground-state energy, the mass gap exponent and the specific heat exponent, are also seen to be dependent on the boundary conditions. We speculate that this anomalous bulk behaviour is a topological effect.