Do you want to publish a course? Click here

Anomalous bulk behaviour in the free parafermion $Z(N)$ spin chain

272   0   0.0 ( 0 )
 Added by Murray Batchelor
 Publication date 2018
  fields Physics
and research's language is English




Ask ChatGPT about the research

We demonstrate using direct numerical diagonalization and extrapolation methods that boundary conditions have a profound effect on the bulk properties of a simple $Z(N)$ model for $N ge 3$ for which the model hamiltonian is non-hermitian. For $N=2$ the model reduces to the well known quantum Ising model in a transverse field. For open boundary conditions the $Z(N)$ model is known to be solved exactly in terms of free parafermions. Once the ends of the open chain are connected by considering the model on a ring, the bulk properties, including the ground-state energy per site, are seen to differ dramatically with increasing $N$. Other properties, such as the leading finite-size corrections to the ground-state energy, the mass gap exponent and the specific heat exponent, are also seen to be dependent on the boundary conditions. We speculate that this anomalous bulk behaviour is a topological effect.



rate research

Read More

We consider the calculation of ground-state expectation values for the non-Hermitian Z(N) spin chain described by free parafermions. For N=2 the model reduces to the quantum Ising chain in a transverse field with open boundary conditions. Use is made of the Hellmann-Feynman theorem to obtain exact results for particular single site and nearest-neighbour ground-state expectation values for general N which are valid for sites deep inside the chain. These results are tested numerically for N=3, along with how they change as a function of distance from the boundary.
Results are given for the ground state energy and excitation spectrum of a simple $N$-state $Z_N$ spin chain described by free parafermions. The model is non-Hermitian for $N ge 3$ with a real ground state energy and a complex excitation spectrum. Although having a simpler Hamiltonian than the superintegrable chiral Potts model, the model is seen to share some properties with it, e.g., the specific heat exponent $alpha=1-2/N$ and the anisotropic correlation length exponents $ u_parallel =1$ and $ u_perp=2/N$.
An analytic method is proposed to compute the surface energy and elementary excitations of the XXZ spin chain with generic non-diagonal boundary fields. For the gapped case, in some boundary parameter regimes the contributions of the two boundary fields to the surface energy are non-additive. Such a correlation effect between the two boundaries also depends on the parity of the site number $N$ even in the thermodynamic limit $Ntoinfty$. For the gapless case, contributions of the two boundary fields to the surface energy are additive due to the absence of long-range correlation in the bulk. Although the $U(1)$ symmetry of the system is broken, exact spinon-like excitations, which obviously do not carry spin-$frac12$, are observed. The present method provides an universal procedure to deal with quantum integrable systems either with or without $U(1)$ symmetry.
The multi-critical fixed points of $O(N)$ symmetric models cease to exist in the $Ntoinfty$ limit, but the mechanism regulating their annihilation still presents several enigmatic aspects. Here, we explore the evolution of high-order multi-critical points in the $(d,N)$ plane and uncover a complex mosaics for their asymptotic behaviour at large $N$. This picture is confirmed by various RG approaches and constitutes a fundamental step towards the full comprehension of critical behaviour in $O(N)$ field theories.
61 - Paul Fendley 2019
I solve a quantum chain whose Hamiltonian is comprised solely of local four-fermi operators by constructing free-fermion raising and lowering operators. The free-fermion operators are both non-local and highly non-linear in the local fermions. This construction yields the complete spectrum of the Hamiltonian and an associated classical transfer matrix. The spatially uniform system is gapless with dynamical critical exponent z=3/2, while staggering the couplings gives a more conventional free-fermion model with an Ising transition. The Hamiltonian is equivalent to that of a spin-1/2 chain with next-nearest-neighbour interactions, and has a supersymmetry generated by a sum of fermion trilinears. The supercharges are part of a large non-abelian symmetry algebra that results in exponentially large degeneracies. The model is integrable for either open or periodic boundary conditions but the free-fermion construction only works for the former, while for the latter the extended symmetry is broken and the degeneracies split.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا