No Arabic abstract
We present a study of the magnetoresistance, the specific heat and the magnetocaloric effect of equiatomic $RET$Mg intermetallics with $RE = {rm La}$, Eu, Gd, Yb and $T = {rm Ag}$, Au and of GdAuIn. Depending on the composition these compounds are paramagnetic ($RE = {rm La}$, Yb) or they order either ferro- or antiferromagnetically with transition temperatures ranging from about 13 to 81 K. All of them are metallic, but the resistivity varies over 3 orders of magnitude. The magnetic order causes a strong decrease of the resistivity and around the ordering temperature we find pronounced magnetoresistance effects. The magnetic ordering also leads to well-defined anomalies in the specific heat. An analysis of the entropy change leads to the conclusions that generally the magnetic transition can be described by an ordering of localized $S=7/2$ moments arising from the half-filled $4f^7$ shells of Eu$^{2+}$ or Gd$^{3+}$. However, for GdAgMg we find clear evidence for two phase transitions indicating that the magnetic ordering sets in partially below about 125 K and is completed via an almost first-order transition at 39 K. The magnetocaloric effect is weak for the antiferromagnets and rather pronounced for the ferromagnets for low magnetic fields around the zero-field Curie temperature.
Magnetocrystalline anisotropy, the microscopic origin of permanent magnetism, is often explained in terms of ferromagnets. However, the best performing permanent magnets based on rare earths and transition metals (RE-TM) are in fact ferrimagnets, consisting of a number of magnetic sublattices. Here we show how a naive calculation of the magnetocrystalline anisotropy of the classic RE-TM ferrimagnet GdCo$_5$ gives numbers which are too large at 0 K and exhibit the wrong temperature dependence. We solve this problem by introducing a first-principles approach to calculate temperature-dependent magnetization vs. field (FPMVB) curves, mirroring the experiments actually used to determine the anisotropy. We pair our calculations with measurements on a recently-grown single crystal of GdCo$_5$, and find excellent agreement. The FPMVB approach demonstrates a new level of sophistication in the use of first-principles calculations to understand RE-TM magnets.
Since the discovery of graphene, two-dimensional materials with atomic level thickness have rapidly grown to be a prosperous field of physical science with interdisciplinary interests, for their fascinating properties and broad applications. Very recently, the experimental observation of ferromagnetism in Cr$_2$Ge$_2$Te$_6$ bilayer and CrI$_3$ monolayer opened a door to pursuit long-absent intrinsic magnetic orders in two-dimensional materials. Meanwhile, the ferroelectricity was also experimentally found in SnTe monolayer and CuInP$_2$S$_6$ few layers. The emergence of these ferroic orders in the two-dimensional limit not only brings new challenges to our physical knowledge, but also provides more functionalities for potential applications. Among various two-dimensional ferroic ordered materials, transition/rare-earth metal halides and their derivants are very common. In this Research Update, based on transition/rare-earth metal halides, the physics of various ferroic orders in two-dimensional will be illustrated. The potential applications based on their magnetic and polar properties will also be discussed.
The low temperature specific heat C(H) of several rare-earth manganites (La_(0.7)Sr_(0.3)MnO_(3), Nd_(0.5)Sr_(0.5)MnO_(3), Pr_(0.5)Sr_(0.5)MnO_(3), La_(0.67)Ca_(0.33)MnO$_(3), La_(0.5)Ca_(0.5)MnO_(3), La_(0.45)Ca_(0.55)MnO_(3) and La_(0.33)Ca_(0.67)MnO_(3)) was measured as a function of magnetic field. We observed behaviour consistent with thermodynamic expectations, i.e., C(H) decreases with field for ferromagnetic metallic compounds by an amount which is in quantitative agreement with spin wave theory. We also find that C(H) increases with field in most compounds with a charge-ordered antiferromagnetic ground state. In compounds which show evidence of a coexistence of ferromagnetic metallic and antiferromagnetic charge-ordered states, C(H) displays some unusual non-equilibrium effects presumably associated with the phase-separation of the two states. We also observe a large anomalous low temperature specific heat at the doping induced metal-insulator transition (at x = 0.50) in La_(1-x)Ca_(x)MnO_(3).
The acute sensitivity of the electrical resistance of certain systems to magnetic fields known as extreme magnetoresistance (XMR) has recently been explored in a new materials context with topological semimetals. Exemplified by WTe$_{2}$ and rare earth monopnictide La(Sb,Bi), these systems tend to be non-magnetic, nearly compensated semimetals and represent a platform for large magnetoresistance driven by intrinsic electronic structure. Here we explore electronic transport in magnetic members of the latter family of semimetals and find that XMR is strongly modulated by magnetic order. In particular, CeSb exhibits XMR in excess of $1.6 times 10^{6}$ % at fields of 9 T while the magnetoresistance itself is non-monotonic across the various magnetic phases and shows a transition from negative magnetoresistance to XMR with field above magnetic ordering temperature $T_{N}$. The magnitude of the XMR is larger than in other rare earth monopnictides including the non-magnetic members and follows an non-saturating power law to fields above 30 T. We show that the overall response can be understood as the modulation of conductivity by the Ce orbital state and for intermediate temperatures can be characterized by an effective medium model. Comparison to the orbitally quenched compound GdBi supports the correlation of XMR with the onset of magnetic ordering and compensation and highlights the unique combination of orbital inversion and type-I magnetic ordering in CeSb in determining its large response. These findings suggest a paradigm for magneto-orbital control of XMR and are relevant to the understanding of rare earth-based correlated topological materials.
As Eu and Gd are zero-orbital-momentum ($L=0$) rare-earth atoms, their crystalline intermetallic alloys illustrate the connection between electron bands and magnetic anisotropy. Here we find out-of-plane anisotropy in 2D atom-thick EuAu$_2$ by X-ray magnetic circular dichroism. Angle-resolved photoemission and density-functional theory prove that this is due to strong $f-d$ band hybridization and Eu$^{2+}$ valence. In contrast, the in-plane anisotropy of the structurally-equivalent GdAu$_2$ is ruled by spin-orbit-split $d$-bands, notably Weyl nodal lines, occupied in the Gd$^{3+}$ state. Irrespectively of $L$, we predict a similar itinerant electron contribution to the anisotropy of analogous compounds.