No Arabic abstract
The acute sensitivity of the electrical resistance of certain systems to magnetic fields known as extreme magnetoresistance (XMR) has recently been explored in a new materials context with topological semimetals. Exemplified by WTe$_{2}$ and rare earth monopnictide La(Sb,Bi), these systems tend to be non-magnetic, nearly compensated semimetals and represent a platform for large magnetoresistance driven by intrinsic electronic structure. Here we explore electronic transport in magnetic members of the latter family of semimetals and find that XMR is strongly modulated by magnetic order. In particular, CeSb exhibits XMR in excess of $1.6 times 10^{6}$ % at fields of 9 T while the magnetoresistance itself is non-monotonic across the various magnetic phases and shows a transition from negative magnetoresistance to XMR with field above magnetic ordering temperature $T_{N}$. The magnitude of the XMR is larger than in other rare earth monopnictides including the non-magnetic members and follows an non-saturating power law to fields above 30 T. We show that the overall response can be understood as the modulation of conductivity by the Ce orbital state and for intermediate temperatures can be characterized by an effective medium model. Comparison to the orbitally quenched compound GdBi supports the correlation of XMR with the onset of magnetic ordering and compensation and highlights the unique combination of orbital inversion and type-I magnetic ordering in CeSb in determining its large response. These findings suggest a paradigm for magneto-orbital control of XMR and are relevant to the understanding of rare earth-based correlated topological materials.
The charge and spin of the electrons in solids have been extensively exploited in electronic devices and in the development of spintronics. Another attribute of electrons - their orbital nature - is attracting growing interest for understanding exotic phenomena and in creating the next-generation of quantum devices such as orbital qubits. Here, we report on orbital-flop induced magnetoresistance anisotropy in CeSb. In the low temperature high magnetic-field driven ferromagnetic state, a series of additional minima appear in the angle-dependent magnetoresistance. These minima arise from the anisotropic magnetization originating from orbital-flops and from the enhanced electron scattering from magnetic multidomains formed around the first-order orbital-flop transition. The measured magnetization anisotropy can be accounted for with a phenomenological model involving orbital-flops and a spin-valve-like structure is used to demonstrate the viable utilization of orbital-flop phenomenon. Our results showcase a contribution of orbital behavior in the emergence of intriguing phenomena.
The recent discovery of extreme magnetoresistance in LaSb introduced lanthanum monopnictides as a new platform to study topological semimetals (TSMs). In this work we report the discovery of extreme magnetoresistance in LaBi, confirming lanthanum monopnictides as a promising family of TSMs. These binary compounds with the simple rock-salt structure are ideal model systems to search for the origin of extreme magnetoresistance. Through a comparative study of magnetotransport effects in LaBi and LaSb, we construct a triangular temperature-field phase diagram that illustrates how a magnetic field tunes the electronic behavior in these materials. We show that the triangular phase diagram can be generalized to other topological semimetals with different crystal structures and different chemical compositions. By comparing our experimental results to band structure calculations, we suggest that extreme magnetoresistance in LaBi and LaSb originates from a particular orbital texture on their qasi-2D Fermi surfaces. The orbital texture, driven by spin-orbit coupling, is likely to be a generic feature of various topological semimetals.
Spin reorientation and magnetisation reversal are two important features of the rare-earth orthorhombic provskites ($RM$O$_{3}$s) that have attracted a lot of attention, though their exact microscopic origin has eluded researchers. Here, using density functional theory and classical atomistic spin dynamics we build a general Heisenberg magnetic model that allows to explore the whole phase diagram of the chromite and ferrite compounds and to scrutinize the microscopic mechanism responsible for spin reorientations and magnetisation reversals. We show that the occurrence of a magnetization reversal transition depends on the relative strength and sign of two interactions between rare-earth and transition-metal atoms: superexchange and Dzyaloshinsky-Moriya. We also conclude that the presence of a smooth spin reorientation transition between the so-called $Gamma_4$ and the $Gamma_2$ phases through a coexisting region, and the temperature range in which it occurs, depends on subtle balance of metal--metal (superexchange and Dzyaloshinsky-Moriya) and metal--rare-earth (Dzyaloshinsky-Moriya) couplings. In particular, we show that the intermediate coexistence region occurs because the spin sublattices rotate at different rates.
The ferromagnetic (FM) nature of Nd2Fe14B has been investigated with muon spin rotation and relaxation ({mu}^+SR) measurements on an aligned, sintered plate-shaped sample. A clear muon spin precession frequency (f_{FM}) corresponding to the static internal FM field at the muon site showed an order parameter-like temperature dependence and disappeared above around 582 K (~T_C). This indicated that the implanted muons are static in the Nd2Fe14B lattice even at temperatures above around 600 K. Using the predicted muon site and local spin densities predicted by DFT calculations, the ordered Nd moment (M_{Nd}) was estimated to be 3.31 {mu}_B at 5 K, when both M_{Fe} and M_{Nd} are parallel to the c-axis and M_{Fe} = 2.1 {mu}_B. Furthermore, M_R in R2Fe14B with R = Y, Ce, Pr, Sm, Gd, Tb, Dy, Ho, Er, and Tm was estimated from f_{mu} values reported in earlier {mu}+SR work, using the FM structure proposed by neutron scattering and the same muon site and local spin density as in Nd2Fe14B. Such estimations yielded M_R values consistent with those obtained by the other methods.
Based on the electronic band structure obtained from first principles DFT calculations, the opticalspectra of yttrium and neodymium nickelates are computed. We show that the results are in fairagreement with available experimental data. We clarify the electronic transitions at the origin of thefirst two peaks, highlighting the important role of transitions from t2g states neglected in previousmodels. We discuss the evolution of the optical spectra from small to large rare-earth cations andrelate the changes to the electronic band structure.