No Arabic abstract
The microwave properties of polycrystalline MgB2 thin films prepared by the so-called in-situ method are investigated. The characterization of the films at microwave frequencies was obtained by a coplanar resonator technique. The analysis of the experimental data results in the determination of penetration depth, surface impedance and complex conductivity. The aim of this work is to set the experimental results in a consistent framework, involving the two-band model in the presence of impurity scattering. The energy gaps are calculated and the contribution of intra- and inter-band scattering is considered. From the comparison between the calculated gap values and the experimental data it turns out that the temperature dependence of the penetration depth can be accounted for by an effective mean energy gap, in agreement with the predictions of Kogan et al. [Phys. Rev. B 69, 132506 (2004)]. On the other hand, the temperature dependence of the real part of the microwave conductivity and of the surface resistance is accounted for by the single smaller gap, in agreement with the work of Jin et al. [Phys. Rev. Lett. 91, 127006 (2003)]. Since these findings rely on the same calculated gap structure, the required consistency is fulfilled.
The scattering process responsible for connecting the bands remains one of the last open questions on the physical properties of MgB2. Through the analysis of the equilibrium and photo-induced far-infrared properties as well as electron spin resonance of MgB2 we propose a phonon mediated energy transfer process between the bands based on the coupling of quasiparticles to an E2g phonon.
We discuss pinning properties of MgB2 thin films grown by pulsed-laser deposition (PLD) and by electron-beam (EB) evaporation. Two mechanisms are identified that contribute most effectively to the pinning of vortices in randomly oriented films. The EB process produces low defected crystallites with small grain size providing enhanced pinning at grain boundaries without degradation of Tc. The PLD process produces films with structural disorder on a scale less that the coherence length that further improves pinning, but also depresses Tc.
The response of superconducting pair-breaking detectors is dependent on the details of the quasiparticle distribution. In Kinetic Inductance Detectors (KIDs), where both pair breaking and non-pair breaking photons are absorbed simultaneously, calculating the detector response therefore requires knowledge of the often nonequilibrium distributions. The quasiparticle effective temperature provides a good approximation to these nonequilibrium distributions. We compare an analytical expression relating absorbed power and the quasiparticle effective temperature in superconducting thin films to full solutions for the nonequilibrium distributions, and find good agreement for a range of materials, absorbed powers, photon frequencies and temperatures typical of KIDs. This analytical expression allows inclusion of nonequilibrium effects in device models without solving for the detailed distributions. We also show our calculations of the frequency dependence of the detector response are in agreement with recent experimental measurements of the response of Ta KIDs at THz frequencies.
We have performed flux noise and AC-susceptibility measurements on two 400 nm thick MgB$_2$ films. Both measurement techniques give information about the vortex dynamics in the sample, and hence the superconducting transition, and can be linked to each other through the fluctuation-dissipation-theorem. The transition widths for the two films are 0.3 and 0.8 K, respectively, and the transitions show a multi step-like behavior in the AC-susceptibility measurements. The same phenomenon is observed in the flux noise measurements through a change in the frequency dependence of the spectral density at each step in the transition. The results are discussed and interpreted in terms of vortices carrying an arbitrary fraction of a flux quantum as well as in terms of different macroscopic regions in the films having slightly different compositions, and hence, different critical temperatures.
We have studied structural and superconducting properties of MgB2 thin films doped with carbon during the hybrid physical-chemical vapor deposition process. A carbon-containing metalorganic precursor bis(cyclopentadienyl)magnesium was added to the carrier gas to achieve carbon doping. As the amount of carbon in the films increases, the resistivity increases, Tc decreases, and the upper critical field increases dramatically as compared to the clean films. The self-field Jc in the carbon-doped films is lower than that in the clean films, but Jc remains relatively high to much higher magnetic fields, indicating stronger pinning. Structurally, the doped films are textured with nano-grains and highly resistive amorphous areas at the grain boundaries. The carbon doping approach can be used to produce MgB2 materials for high magnetic field applications.