Do you want to publish a course? Click here

Quantum critical 5f-electrons avoid singularities in U(Ru,Rh)2Si2

136   0   0.0 ( 0 )
 Publication date 2005
  fields Physics
and research's language is English




Ask ChatGPT about the research

We present specific heat measurements of 4% Rh-doped U(Ru,Rh)2Si2 at magnetic fields above the proposed metamagnetic transition field Hm~34 T, revealing striking similarities to the isotructural Ce analog CeRu2Si2, suggesting that strongly renormalized hybridized band models apply equally well to both systems. The vanishing bandwidths as H --> Hm are consistent with a putative quantum critical point close to Hm. The existence of a phase transition into an ordered phase in the vicinity of Hm for 4% Rh-doped U(Ru,Rh)2Si2, but not for CeRu2Si2, is consistent with a stronger super-exchange in the case of the U 5-f system, with irreversible processes at the transition revealing a strong coupling of the 5f orbitals to the lattice, most suggestive of orbital or electric quadrupolar order.



rate research

Read More

We develop a theory for the electronic excitations in UPt$_3$ which is based on the localization of two of the $5f$ electrons. The remaining $f$ electron is delocalized and acquires a large effective mass by inducing intra-atomic excitations of the localized ones. The measured deHaas-vanAlphen frequencies of the heavy quasiparticles are explained as well as their anisotropic heavy mass. A model calculation for a small cluster reveals why only the largest of the different $5f$ hopping matrix elements is operative causing the electrons in other orbitals to localize.
We present an extensive study of the ferromagnetic heavy fermion compound U$_4$Ru$_7$Ge$_6$. Measurements of electrical resistivity, specific heat and magnetic properties show that U$_4$Ru$_7$Ge$_6$ orders ferromagnetically at ambient pressure with a Curie temperature $T_{C} = 6.8 pm 0.3$ K. The low temperature magnetic behavior of this soft ferromagnet is dominated by the excitation of gapless spin-wave modes. Our results on the transport properties of U$_4$Ru$_7$Ge$_6$ under pressures up to $2.49$ GPa suggest that U$_4$Ru$_7$Ge$_6$ has a putative ferromagnetic quantum critical point (QCP) at $P_c approx 1.7 pm 0.02$ GPa. In the ordered phase, ferromagnetic magnons scatter the conduction electrons and give rise to a well defined power law temperature dependence in the resistivity. The coefficient of this term is related to the spin-wave stiffness and measurements of the very low temperature resistivity allow to accompany the behavior of this quantity as the the ferromagnetic QCP is approached. We find that the spin-wave stiffness decreases with increasing pressure implying that the transition to the non-magnetic Fermi liquid state is driven by the softening of the magnons. The observed quantum critical behavior of the magnetic stiffness is consistent with the influence of disorder in our system. At quantum criticality ($P = P_c approx 1.7 pm 0.02$ GPa), the resistivity shows the behavior expected for an itinerant metallic system near a ferromagnetic QCP.
We report the high-field induced magnetic phases and phase diagram of a high quality urxrs~single crystal prepared using a modified Czochralski method. Our study, that combines high-field magnetization and electrical resistivity measurements, shows for fields applied along the $c$-axis direction three field-induced magnetic phase transitions at $mu_{0} H_{c1}$ = 21.60 T, $mu_{0} H_{c2}$ = 37.90 T and $mu_{0} H_{c3}$ = 38.25 T, respectively. In agreement with a microscopic up-up-down arrangement of the U magnetic moments the phase above $H_{c1}$ has a magnetization of about one third of the saturated value. In contrast the phase between $H_{c2}$ and $H_{c3}$ has a magnetization that is a factor of two lower than above the $H_{c3}$, where a polarized Fermi-liquid state with a saturated moment $M_{s}$ $approx$ 2.1 $mu_{B}$/U is realized. Most of the respective transitions are reflected in the electrical resistivity as sudden drastic changes. Most notably, the phase between $H_{c1}$ and $H_{c2}$ exhibits substantially larger values. As the temperature increases, transitions smear out and disappear above $approx$ 15 K. However, a substantial magnetoresistance is observed even at temperatures as high as 80 K. Due to a strong uniaxial magnetocrystalline anisotropy a very small field effect is observed for fields apllied perpendicular to the $c$-axis direction.
We have elucidated the nature of the electron correlation effect in uranium compounds by imaging the partial $mathrm{U}~5f$ density of states (pDOS) of typical itinerant, localized, and heavy fermion uranium compounds by using the $mathrm{U}~4d-5f$ resonant photoemission spectroscopy. Obtained $mathrm{U}~5f$ pDOS exhibit a systematic trend depending on the physical properties of compounds. The coherent peak at the Fermi level can be described by the band-structure calculation, but an incoherent peak emerges on the higher binding energy side ($lesssim 1~mathrm{eV}$) in the Uf pDOS of localized and heavy fermion compounds. As the $mathrm{U}~5f$ state is more localized, the intensity of the incoherent peak is enhanced and its energy position is shifted to higher binding energy. These behaviors are consistent with the prediction of the Mott metal-insulator transition, suggesting that the Hubbard-$U$ type mechanism takes an essential role in the $5f$ electronic structure of actinide materials.
An important problem in contemporary physics concerns quantum-critical fluctuations in metals. A scaling function for the momentum, frequency, temperature and magnetic field dependence of the correlation function near a 2D-ferromagnetic quantum-critical point (QCP) is constructed, and its singularities are determined by comparing to the recent calculations of the correlation functions of the dissipative quantum XY model (DQXY). The calculations are motivated by the measured properties of the metallic compound YFe$_2$Al$_{10}$, which is a realization of the DQXY model in 2D. The frequency, temperature and magnetic field dependence of the scaling function as well as the singularities measured in the experiments are given by the theory without adjustable exponents. The same model is applicable to the superconductor-insulator transitions, classes of metallic AFM-QCPs, and as fluctuations of the loop-current ordered state in hole-doped cuprates. The results presented here lend credence to the solution found for the 2D-DQXY model, and its applications in understanding quantum-critical properties of diverse systems.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا