No Arabic abstract
An important problem in contemporary physics concerns quantum-critical fluctuations in metals. A scaling function for the momentum, frequency, temperature and magnetic field dependence of the correlation function near a 2D-ferromagnetic quantum-critical point (QCP) is constructed, and its singularities are determined by comparing to the recent calculations of the correlation functions of the dissipative quantum XY model (DQXY). The calculations are motivated by the measured properties of the metallic compound YFe$_2$Al$_{10}$, which is a realization of the DQXY model in 2D. The frequency, temperature and magnetic field dependence of the scaling function as well as the singularities measured in the experiments are given by the theory without adjustable exponents. The same model is applicable to the superconductor-insulator transitions, classes of metallic AFM-QCPs, and as fluctuations of the loop-current ordered state in hole-doped cuprates. The results presented here lend credence to the solution found for the 2D-DQXY model, and its applications in understanding quantum-critical properties of diverse systems.
In this Letter we will show that, in the presence of a properly modulated Dzyaloshinskii-Moriya (DM) interaction, a $U(1)$ vortex-antivortex lattice appears at low temperatures for a wide range of the DM interaction. Even more, in the region dominated by the exchange interaction, a standard BKT transition occurs. In the opposite regime, the one dominated by the DM interaction, a kind of inverse BKT transition (iBKT) takes place. As temperature rises, the vortex-antivortex lattice starts melting by annihilation of pairs of vortex-antivortex, in a sort of inverse BKT transition.
Earlier Monte-Carlo calculations on the dissipative two-dimensional XY model are extended in several directions. We study the phase diagram and the correlation functions when dissipation is very small, where it has properties of the classical 3D-XY transition, i.e. one with a dynamical critical exponent $z=1$. The transition changes from $z=1$ to the class of criticality with $z to infty$ driven by topological defects, discovered earlier, beyond a critical dissipation. We also find that the critical correlations have power-law singularities as a function of tuning the ratio of the kinetic energy to the potential energy for fixed large dissipation, as opposed to essential singularities on tuning dissipation keeping the former fixed. A phase with temporal disorder but spatial order of the Kosterlitz-Thouless form is also further investigated. We also present results for the transition when the allowed Caldeira-Leggett form of dissipation and the allowed form of dissipation coupling to the compact rotor variables are both included. The nature of the transition is then determined by the Caldeira-Leggett form.
Antiferromagnetic quantum spin systems can exhibit a transition between collinear and spiral ground states, driven by frustration. Classically this is a smooth crossover and the crossover point is termed a Lifshitz point. Quantum fluctuations change the nature of the transition. In particular it has been argued previously that in the two-dimensional (2D) case a spin liquid (SL) state is developed in the vicinity of the Lifshitz point, termed a Lifshitz SL. In the present work, using a field theory approach, we solve the Lifshitz quantum phase transition problem for the 2D frustrated XY-model. Specifically, we show that, unlike the SU(2) symmetric Lifshitz case, in the XY-model the SL exists only at the critical point. At zero temperature we calculate nonuniversal critical exponents in the Neel and in the spin spiral state and relate these to properties of the SL. We also solve the transition problem at a finite temperature and discuss the role of topological excitations.
Anomalous magnetic and electronic properties of the half-metallic ferromagnets (HMF) have been discussed. The general conception of the HMF electronic structure which take into account the most important correlation effects from electron-magnon interactions, in particular, the spin-polaron effects, is presented. Special attention is paid to the so called non-quasiparticle (NQP) or incoherent states which are present in the gap near the Fermi level and can give considerable contributions to thermodynamic and transport properties. Prospects of experimental observation of the NQP states in core-level spectroscopy is discussed. Special features of transport properties of the HMF which are connected with the absence of one-magnon spin-flip scattering processes are investigated. The temperature and magnetic field dependences of resistivity in various regimes are calculated. It is shown that the NQP states can give a dominate contribution to the temperature dependence of the impurity-induced resistivity and in the tunnel junction conductivity. First principle calculations of the NQP-states for the prototype half-metallic material NiMnSb within the local-density approximation plus dynamical mean field theory (LDA+DMFT) are presented.
We investigate the unusual magnetic properties of nearly-critical, weakly-itinerant ferromagnets with general formula UTX, where T=Rh,Co and X=Ge,Si. As a unique feature about these systems, we show that changes in the V_{df} hybridization control their proximity to a ferromagnetic instability, and determine the evolution of: the ground state magnetization, M_0, the Curie Temperature, T_C, the density of states at the Fermi level, N(E_F), the T^2 resistivity coefficient, A, and the specific heat coefficient, gamma. The universal aspect of our findings comes from the dependence on only two parameters: the T_d bandwidth, W_d, and the distance between T_d and U_f band centers, C_{T_d}-C_{U_f}.