Do you want to publish a course? Click here

Observation of the vertex-rounding transition for a crystal in equilibrium: oxygen-covered tungsten

285   0   0.0 ( 0 )
 Publication date 2004
  fields Physics
and research's language is English




Ask ChatGPT about the research

Equilibrium crystal shape of oxygen-covered tungsten is followed as a function of temperature using field ion microscopy. In the vicinity of the (111) region, at the temperature $970pm70$ K, the system undergoes a phase transition from a polyhedral form (sharp edges and sharp vertex) to a rounded form (sharp edges, rounded vertex).



rate research

Read More

The equilibrium crystal shape (ECS) of oxygen-covered tungsten micricrystal is studied as a function of temperature. The specially designed ultrafast crystal quenching setup with the cooling rate of 6000 K/s allows to draw conclusions about ECS at high temperatures. The edge-rounding transition is shown to occur between 1300 K and 1430 K. The ratio of surface free energies $gamma(111)/gamma(211)$ is determined as a function of temperature.
76 - Saul Ares , Angel Sanchez 2004
We present a modified version of the one-dimensional sine-Gordon that exhibits a thermodynamic, roughening phase transition, in analogy with the 2D usual sine-Gordon model. The model is suited to study the crystalline growth over an impenetrable substrate and to describe the wetting transition of a liquid that forms layers. We use the transfer integral technique to write down the pseudo-Schrodinger equation for the model, which allows to obtain some analytical insight, and to compute numerically the free energy from the exact transfer operator. We compare the results with Monte Carlo simulations of the model, finding a perfect agreement between both procedures. We thus establish that the model shows a phase transition between a low temperature flat phase and a high temperature rough one. The fact that the model is one dimensional and that it has a true phase transition makes it an ideal framework for further studies of roughening phase transitions.
We introduce a model of negotiation dynamics whose aim is that of mimicking the mechanisms leading to opinion and convention formation in a population of individuals. The negotiation process, as opposed to ``herding-like or ``bounded confidence driven processes, is based on a microscopic dynamics where memory and feedback play a central role. Our model displays a non-equilibrium phase transition from an absorbing state in which all agents reach a consensus to an active stationary state characterized either by polarization or fragmentation in clusters of agents with different opinions. We show the exystence of at least two different universality classes, one for the case with two possible opinions and one for the case with an unlimited number of opinions. The phase transition is studied analytically and numerically for various topologies of the agents interaction network. In both cases the universality classes do not seem to depend on the specific interaction topology, the only relevant feature being the total number of different opinions ever present in the system.
We study the sandpile model on three-dimensional spanning Ising clusters with the temperature $T$ treated as the control parameter. By analyzing the three dimensional avalanches and their two-dimensional projections (which show scale-invariant behavior for all temperatures), we uncover two universality classes with different exponents (an ordinary BTW class, and SOC$_{T=infty}$), along with a tricritical point (at $T_c$, the critical temperature of the host) between them. The transition between these two criticalities is induced by the transition in the support. The SOC$_{T=infty}$ universality class is characterized by the exponent of the avalanche size distribution $tau^{T=infty}=1.27pm 0.03$, consistent with the exponent of the size distribution of the Barkhausen avalanches in amorphous ferromagnets (Phys. Rev. L 84, 4705 (2000)). The tricritical point is characterized by its own critical exponents. In addition to the avalanche exponents, some other quantities like the average height, the spanning avalanche probability (SAP) and the average coordination number of the Ising clusters change significantly the behavior at this point, and also exhibit power-law behavior in terms of $epsilonequiv frac{T-T_c}{T_c}$, defining further critical exponents. Importantly the finite size analysis for the activity (number of topplings) per site shows the scaling behavior with exponents $beta=0.19pm 0.02$ and $ u=0.75pm 0.05$. A similar behavior is also seen for the SAP and the average avalanche height. The fractal dimension of the external perimeter of the two-dimensional projections of avalanches is shown to be robust against $T$ with the numerical value $D_f=1.25pm 0.01$.
156 - B. Roy , S. B. Santra 2016
Discontinuous transition is observed in the equilibrium cluster properties of a percolation model with suppressed cluster growth as the growth parameter g0 is tuned to the critical threshold at sufficiently low initial seed concentration rho in contrast to the previously reported results on non- equilibrium growth models. In the present model, the growth process follows all the criteria of the original percolation model except continuously updated occupation probability of the lattice sites that suppresses the growth of a cluster according to its size. As rho varied from higher values to smaller values, a line of continuous transition points encounters a coexistence region of spanning and non- spanning large clusters. At sufficiently small values of rho (less equal 0.05), the growth parameter g0 exceeds the usual percolation threshold and generates compact spanning clusters leading to discontinuous transitions.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا