Do you want to publish a course? Click here

Non-equilibrium phase transition in negotiation dynamics

78   0   0.0 ( 0 )
 Added by Andrea Baronchelli
 Publication date 2006
and research's language is English




Ask ChatGPT about the research

We introduce a model of negotiation dynamics whose aim is that of mimicking the mechanisms leading to opinion and convention formation in a population of individuals. The negotiation process, as opposed to ``herding-like or ``bounded confidence driven processes, is based on a microscopic dynamics where memory and feedback play a central role. Our model displays a non-equilibrium phase transition from an absorbing state in which all agents reach a consensus to an active stationary state characterized either by polarization or fragmentation in clusters of agents with different opinions. We show the exystence of at least two different universality classes, one for the case with two possible opinions and one for the case with an unlimited number of opinions. The phase transition is studied analytically and numerically for various topologies of the agents interaction network. In both cases the universality classes do not seem to depend on the specific interaction topology, the only relevant feature being the total number of different opinions ever present in the system.



rate research

Read More

We study the sandpile model on three-dimensional spanning Ising clusters with the temperature $T$ treated as the control parameter. By analyzing the three dimensional avalanches and their two-dimensional projections (which show scale-invariant behavior for all temperatures), we uncover two universality classes with different exponents (an ordinary BTW class, and SOC$_{T=infty}$), along with a tricritical point (at $T_c$, the critical temperature of the host) between them. The transition between these two criticalities is induced by the transition in the support. The SOC$_{T=infty}$ universality class is characterized by the exponent of the avalanche size distribution $tau^{T=infty}=1.27pm 0.03$, consistent with the exponent of the size distribution of the Barkhausen avalanches in amorphous ferromagnets (Phys. Rev. L 84, 4705 (2000)). The tricritical point is characterized by its own critical exponents. In addition to the avalanche exponents, some other quantities like the average height, the spanning avalanche probability (SAP) and the average coordination number of the Ising clusters change significantly the behavior at this point, and also exhibit power-law behavior in terms of $epsilonequiv frac{T-T_c}{T_c}$, defining further critical exponents. Importantly the finite size analysis for the activity (number of topplings) per site shows the scaling behavior with exponents $beta=0.19pm 0.02$ and $ u=0.75pm 0.05$. A similar behavior is also seen for the SAP and the average avalanche height. The fractal dimension of the external perimeter of the two-dimensional projections of avalanches is shown to be robust against $T$ with the numerical value $D_f=1.25pm 0.01$.
The theory of continuous phase transitions predicts the universal collective properties of a physical system near a critical point, which for instance manifest in characteristic power-law behaviours of physical observables. The well-established concept at or near equilibrium, universality, can also characterize the physics of systems out of equilibrium. The most fundamental instance of a genuine non-equilibrium phase transition is the directed percolation universality class, where a system switches from an absorbing inactive to a fluctuating active phase. Despite being known for several decades it has been challenging to find experimental systems that manifest this transition. Here we show theoretically that signatures of the directed percolation universality class can be observed in an atomic system with long range interactions. Moreover, we demonstrate that even mesoscopic ensembles --- which are currently studied experimentally --- are sufficient to observe traces of this non-equilibrium phase transition in one, two and three dimensions.
When a second-order phase transition is crossed at fine rate, the evolution of the system stops being adiabatic as a result of the critical slowing down in the neighborhood of the critical point. In systems with a topologically nontrivial vacuum manifold, disparate local choices of the ground state lead to the formation of topological defects. The universality class of the transition imprints a signature on the resulting density of topological defects: It obeys a power law in the quench rate, with an exponent dictated by a combination of the critical exponents of the transition. In inhomogeneous systems the situation is more complicated, as the spontaneous symmetry breaking competes with bias caused by the influence of the nearby regions that already chose the new vacuum. As a result, the choice of the broken symmetry vacuum may be inherited from the neighboring regions that have already entered the new phase. This competition between the inherited and spontaneous symmetry breaking enhances the role of causality, as the defect formation is restricted to a fraction of the system where the front velocity surpasses the relevant sound velocity and phase transition remains effectively homogeneous. As a consequence, the overall number of topological defects can be substantially suppressed. When the fraction of the system is small, the resulting total number of defects is still given by a power law related to the universality class of the transition, but exhibits a more pronounced dependence on the quench rate. This enhanced dependence complicates the analysis but may also facilitate experimental test of defect formation theories.
Femtosecond light-induced phase transitions between different macroscopic orders provide the possibility to tune the functional properties of condensed matter on ultrafast timescales. In first-order phase transitions, transient non-equilibrium phases and inherent phase coexistence often preclude non-ambiguous detection of transition precursors and their temporal onset. Here, we present a study combining time-resolved photoelectron spectroscopy and ab-initio electron dynamics calculations elucidating the transient subpicosecond processes governing the photoinduced generation of ferromagnetic order in antiferromagnetic FeRh. The transient photoemission spectra are accounted for by assuming that not only the occupation of electronic states is modified during the photoexcitation process. Instead, the photo-generated non-thermal distribution of electrons modifies the electronic band structure. The ferromagnetic phase of FeRh, characterized by a minority band near the Fermi energy, is established 350+- 30 fs after the laser excitation. Ab-initio calculations indicate that the phase transition is initiated by a photoinduced Rh-to-Fe charge transfer.
The extraction of membrane tubes by molecular motors is known to play an important role for the transport properties of eukaryotic cells. By studying a generic class of models for the tube extraction, we discover a rich phase diagram. In particular we show that the density of motors along the tube can exhibit shocks, inverse shocks and plateaux, depending on parameters which could in principle be probed experimentally. In addition the phase diagram exhibits interesting reentrant behavior.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا