Do you want to publish a course? Click here

Optically induced spin polarization of an electric current through a quantum dot

282   0   0.0 ( 0 )
 Added by Lev Mourokh
 Publication date 2004
  fields Physics
and research's language is English




Ask ChatGPT about the research

We examine electron transport through semiconductor quantum dot subject to a continuous circularly polarized optical irradiation resonant to the electron - heavy hole transition. Electrons having certain spin polarization experience Rabi oscillation and their energy levels are shifted by the Rabi frequency. Correspondingly, the equilibrium chemical potential of the leads and the lead-to-lead bias voltage can be adjusted so only electrons with spin-up polarization or only electrons with spin-down polarization contribute to the current. The temperature dependence of the spin polarization of the current is also discussed.



rate research

Read More

A normally incident light of linear polarization injects a pure spin current in a strip of 2-dimensional electron gas with spin-orbit coupling. We report observation of an electric current with a butterfly-like pattern induced by such a light shed on the vicinity of a crossbar shaped InGaAs/InAlAs quantum well. Its light polarization dependence is the same as that of the spin current. We attribute the observed electric current to be converted from the optically injected spin current caused by scatterings near the crossing. Our observation provides a realistic technique to detect spin currents, and opens a new route to study the spin-related science and engineering in semiconductors.
151 - E. Poem , O. Kenneth , Y. Kodriano 2011
We demonstrate control over the spin state of a semiconductor quantum dot exciton using a polarized picosecond laser pulse slightly detuned from a biexciton resonance. The control pulse follows an earlier pulse, which generates an exciton and initializes its spin state as a coherent superposition of its two non-degenerate eigenstates. The control pulse preferentially couples one component of the exciton state to the biexciton state, thereby rotating the excitons spin direction. We detect the rotation by measuring the polarization of the exciton spectral line as a function of the time-difference between the two pulses. We show experimentally and theoretically how the angle of rotation depends on the detuning of the second pulse from the biexciton resonance.
We put forward a mechanism for current induced spin polarization for a hole in a quantum dot side-coupled to a quantum wire, that is based on the spin-orbit splitting of the valence band. We predict that in a stark contrast with the traditional mechanisms based on the linear in momentum spin-orbit coupling, an exponentially small bias applied to the quantum wire with heavy holes is enough to create the 100% spin polarization of a localized light hole. Microscopically, the effect is related with the formation of chiral quasi bound states and the spin dependent tunneling of holes from the quantum wire to the quantum dot. This novel current induced spin polarization mechanism is equally relevant for the GaAs, Si and Ge based semiconductor nanostructures.
Compared to electrons, holes in InAs quantum dots have a significantly weaker hyperfine interaction that leads to less dephasing from nuclear spins. Thus many recent studies have suggested that nuclear spins are unimportant for hole spin dynamics compared to electric field fluctuations. We show that the hole hyperfine interaction can have a strong effect on hole spin coherence measurements through a nuclear feedback effect. The nuclear polarization is generated through a unique process that is dependent on the anisotropy of the hole hyperfine interaction and the coherent precession of nuclear spins, giving rise to strong modulation at the nuclear precession frequency.
98 - A. Hernando , F. Guinea , 2019
We analyze the contribution of the inhomogeneous magnetic field induced by an electrical current to the spin Hall effect in metals. The Zeeman coupling between the field and the electron spin leads to a spin dependent force, and to spin accumulation at the edges. We compare the effect of this relativistic correction to the electron dynamics to the features induced by the spin-orbit interaction. The effect of current induced magnetic fields on the spin Hall effect can be comparable to the extrinsic contribution from the spin-orbit interaction, although it does not require the presence of heavy elements with a strong spin-orbit interaction. The induced spins are oriented normal to the metal slab.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا