Do you want to publish a course? Click here

Current Induced Hole Spin Polarization in Quantum Dot via Chiral Quasi Bound State

72   0   0.0 ( 0 )
 Added by Dmitry Smirnov S
 Publication date 2021
  fields Physics
and research's language is English




Ask ChatGPT about the research

We put forward a mechanism for current induced spin polarization for a hole in a quantum dot side-coupled to a quantum wire, that is based on the spin-orbit splitting of the valence band. We predict that in a stark contrast with the traditional mechanisms based on the linear in momentum spin-orbit coupling, an exponentially small bias applied to the quantum wire with heavy holes is enough to create the 100% spin polarization of a localized light hole. Microscopically, the effect is related with the formation of chiral quasi bound states and the spin dependent tunneling of holes from the quantum wire to the quantum dot. This novel current induced spin polarization mechanism is equally relevant for the GaAs, Si and Ge based semiconductor nanostructures.



rate research

Read More

We investigate the current-induced spin polarization in the two-dimensional hole gas (2DHG) with the structure inversion asymmetry. By using the perturbation theory, we re-derive the effective $k$-cubic Rashba Hamiltonian for 2DHG and the generalized spin operators accordingly. Then based on the linear response theory we calculate the current-induced spin polarization both analytically and numerically with the disorder effect considered. We have found that, quite different from the two-dimensional electron gas, the spin polarization in 2DHG depends linearly on Fermi energy in the low doping regime, and with increasing Fermi energy, the spin polarization may be suppressed and even changes its sign. We predict a pronounced peak of the spin polarization in 2DHG once the Fermi level is somewhere between minimum points of two spin-split branches of the lowest light-hole subband. We discuss the possibility of measurements in experiments as regards the temperature and the width of quantum wells.
We examine electron transport through semiconductor quantum dot subject to a continuous circularly polarized optical irradiation resonant to the electron - heavy hole transition. Electrons having certain spin polarization experience Rabi oscillation and their energy levels are shifted by the Rabi frequency. Correspondingly, the equilibrium chemical potential of the leads and the lead-to-lead bias voltage can be adjusted so only electrons with spin-up polarization or only electrons with spin-down polarization contribute to the current. The temperature dependence of the spin polarization of the current is also discussed.
76 - N. Sasao , H. Okada , Y. Utsumi 2019
We analyse the appearance of a mechanical torque that acts on a chiral molecule: a single-stranded DNA, in which the spin-orbit interaction is expected to induce a spin-selectivity effect. The mechanical torque is shown to appear as a result of the non-conservation of the spin current in the presence of the spin-orbit interaction. Adopting a simple microscopic model Hamiltonian for a chiral molecule connected to source and drain leads, and accounting for the mechanical torque acting on the chiral molecule as the back action on the electrons traversing the molecule, we derive the spin continuity-equation. It connects the spin current expressed by a Landauer-type formula and the mechanical torque. Thus, by injecting a spin-polarized current from the source electrode, it is possible to generate a torque, which will rotate the DNA molecule.
Current-induced spin polarization (CISP) is rederived in ballistic spin-orbit-coupled electron systems, based on equilibrium statistical mechanics. A simple and useful picture is correspondingly proposed to help understand the CISP and predict the polarization direction. Nonequilibrium Landauer-Keldysh formalism is applied to demonstrate the validity of the statistical picture, taking the linear Rashba-Dresselhaus [001] two-dimensional system as a specific example. Spin densities induced by the CISP in semiconductor heterostructures and in metallic surface states are compared, showing that the CISP increases with the spin splitting strength and hence suggesting that the CISP should be more observable on metal and semimetal surfaces due to the discovered strong Rashba splitting. An application of the CISP designed to generate a spin-Hall pattern in the inplane, instead of the out-of-plane, component is also proposed.
139 - M. C. Rogge , E. Rasanen , 2010
The electronic states of lateral many electron quantum dots in high magnetic fields are analyzed in terms of energy and spin. In a regime with two Landau levels in the dot, several Coulomb blockade peaks are measured. A zig-zag pattern is found as it is known from the Fock-Darwin spectrum. However, only data from Landau level 0 show the typical spin-induced bimodality, whereas features from Landau level 1 cannot be explained with the Fock-Darwin picture. Instead, by including the interaction effects within spin-density-functional theory a good agreement between experiment and theory is obtained. The absence of bimodality on Landau level 1 is found to be due to strong spin polarization.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا