Do you want to publish a course? Click here

Strong Hyperfine-Induced Modulation of an Optically-Driven Hole Spin in an InAs Quantum Dot

154   0   0.0 ( 0 )
 Added by Sam Carter
 Publication date 2013
  fields Physics
and research's language is English




Ask ChatGPT about the research

Compared to electrons, holes in InAs quantum dots have a significantly weaker hyperfine interaction that leads to less dephasing from nuclear spins. Thus many recent studies have suggested that nuclear spins are unimportant for hole spin dynamics compared to electric field fluctuations. We show that the hole hyperfine interaction can have a strong effect on hole spin coherence measurements through a nuclear feedback effect. The nuclear polarization is generated through a unique process that is dependent on the anisotropy of the hole hyperfine interaction and the coherent precession of nuclear spins, giving rise to strong modulation at the nuclear precession frequency.



rate research

Read More

We measure transport at finite bias through a double quantum dot formed by top-gates in an InAs nanowire. Pauli spin-bockade is confirmed with several electrons in the dot. This is expected due to the small exchange interactions in InAs and the large singlet-triplet splitting, which can be measured and tuned by a gate voltage.
We investigate the triplet-singlet relaxation in a double quantum dot defined by top-gates in an InAs nanowire. In the Pauli spin blockade regime, the leakage current can be mainly attributed to spin relaxation. While at weak and strong inter-dot coupling relaxation is dominated by two individual mechanisms, the relaxation is strongly reduced at intermediate coupling and finite magnetic field. In addition we observe a charateristic bistability of the spin-non conserving current as a function of magnetic field. We propose a model where these features are explained by the polarization of nuclear spins enabled by the interplay between hyperfine and spin-orbit mediated relaxation.
A linear triple quantum dot (TQD) integrated with a quantum dot (QD) charge sensor is realized. The TQD and the charge sensor are built from two adjacent InAs nanowires by fine finger gate technique. The charge state configurations of the nanowire TQD are studied by measurements of the direct transport signals of the TQD and by detection of the charge state transitions in the TQD via the nanowire QD sensor. Excellent agreements in the charge stability diagrams of the TQD obtained by the direct transport measurements and by the charge-state transition detection measurements are achieved. It is shown that the charge stability diagrams are featured by three groups of charge state transition lines of different slopes, corresponding to the changes in the electron occupation numbers of the three individual QDs in the TQD. It is also shown that the integrated nanowire QD sensor is highly sensitive and can detect the charge state transitions in the cases where the direct transport signals of the TQD are too weak to be measurable. Tuning to a regime, where all the three QDs in the TQD are close to be on resonance with the Fermi level of the source and drain reservoirs and co-existence of triple and quadruple points becomes possible, has also been demonstrated with the help of the charge sensor in the region where the direct transport signals of the TQD are hardly visible.
We demonstrate the extension of coherence between all four two-electron spin ground states of an InAs quantum dot molecule (QDM) via non-local suppression of nuclear spin fluctuations in both constituent quantum dots (QDs), while optically addressing only the upper QD transitions. Long coherence times are revealed through dark-state spectroscopy as resulting from nuclear spin locking mediated by the exchange interaction between the QDs. Lineshape analysis provides the first measurement of the quieting of the Overhauser field distribution correlating with reduced nuclear spin fluctuations.
Dispersive sensing is a powerful technique that enables scalable and high-fidelity readout of solid-state quantum bits. In particular, gate-based dispersive sensing has been proposed as the readout mechanism for future topological qubits, which can be measured by single electrons tunneling through zero-energy modes. The development of such a readout requires resolving the coherent charge tunneling amplitude from a quantum dot in a Majorana-zero-mode host system faithfully on short time scales. Here, we demonstrate rapid single-shot detection of a coherent single-electron tunneling amplitude between InAs nanowire quantum dots. We have realized a sensitive dispersive detection circuit by connecting a sub-GHz, lumped element microwave resonator to a high-lever arm gate on one of dots. The resulting large dot-resonator coupling leads to an observed dispersive shift that is of the order of the resonator linewidth at charge degeneracy. This shift enables us to differentiate between Coulomb blockade and resonance, corresponding to the scenarios expected for qubit state readout, with a signal to noise ratio exceeding 2 for an integration time of 1 microsecond. Our result paves the way for single shot measurements of fermion parity on microsecond timescales in topological qubits.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا