Do you want to publish a course? Click here

Thermal transport in SiC nanostructures

64   0   0.0 ( 0 )
 Added by Eleni Ziambaras
 Publication date 2004
  fields Physics
and research's language is English




Ask ChatGPT about the research

SiC is a robust semiconductor material considered ideal for high-power application due to its material stability and large bulk thermal conductivity defined by the very fast phonons. In this paper, however, we show that both material-interface scattering and total-internal reflection significantly limit the SiC-nanostructure phonon transport and hence the heat dissipation in a typical device. For simplicity we focus on planar SiC nanostructures and calculate the thermal transport both parallel to the layers in a substrate/SiC/oxide heterostructure and across a SiC/metal gate or contact. We find that the phonon-interface scattering produces a heterostructure thermal conductivity significantly smaller than what is predicted in a traditional heat-transport calculation. We also document that the high-temperature heat flow across the metal/SiC interface is limited by total-internal reflection effects and maximizes with a small difference in the metal/SiC sound velocities.



rate research

Read More

This work summarizes recent progress on the thermal transport properties of three-dimensional (3D) nanostructures, with an emphasis on experimental results. Depending on the applications, different 3D nanostructures can be prepared or designed to either achieve a low thermal conductivity for thermal insulation or thermoelectric devices, or a high thermal conductivity for thermal interface materials used in the continuing miniaturization of electronics. A broad range of 3D nanostructures have been discussed, ranging from colloidal crystals/assemblies, array structures, holey structures, hierarchical structures, 3D nanostructured fillers for metal matrix composites and polymer composites. Different factors that impact the thermal conductivity of these 3D structures are compared and analyzed. This work provides an overall understanding of the thermal transport properties of various 3D nanostructures, which will shed light on the thermal management at nanoscale.
The minimization of electronics makes heat dissipation of related devices an increasing challenge. When the size of materials is smaller than the phonon mean free paths, phonons transport without internal scatterings and laws of diffusive thermal conduction fail, resulting in significant reduction in the effective thermal conductivity. This work reports, for the first time, the temperature dependent thermal conductivity of doped epitaxial 6H-SiC and monocrystalline porous 6H-SiC below room temperature probed by time-domain thermoreflectance. Strong quasi-ballistic thermal transport was observed in these samples, especially at low temperatures. Doping and structural boundaries were applied to tune the quasi-ballistic thermal transport since dopants selectively scatter high-frequency phonons while boundaries scatter phonons with long mean free paths. Exceptionally strong phonon scattering by boron dopants are observed, compared to nitrogen dopants. Furthermore, orders of magnitude reduction in the measured thermal conductivity was observed at low temperatures for the porous 6H-SiC compared to the epitaxial 6H-SiC. Finally, first principles calculations and a simple Callaway model are built to understand the measured thermal conductivities. Our work sheds light on the fundamental understanding of thermal conduction in technologically-important wide bandgap semiconductors such as 6H-SiC and will impact applications such as thermal management of 6H-SiC-related electronics and devices.
Spin information processing is a possible new paradigm for post-CMOS (complementary metal-oxide semiconductor) electronics and efficient spin propagation over long distances is fundamental to this vision. However, despite several decades of intense research, a suitable platform is still wanting. We report here on highly efficient spin transport in two-terminal polarizer/analyser devices based on high-mobility epitaxial graphene grown on silicon carbide. Taking advantage of high-impedance injecting/detecting tunnel junctions, we show spin transport efficiencies up to 75%, spin signals in the mega-ohm range and spin diffusion lengths exceeding 100 {mu}m. This enables spintronics in complex structures: devices and network architectures relying on spin information processing, well beyond present spintronics applications, can now be foreseen.
Silicon carbide silicon carbide (SiC SiC) composites are often used in oxidizing environments at high temperatures. Measurements of the thermal conductance of the oxide layer provide a way to better understand the oxidation process with high spatial resolution. We use time domain thermoreflectance (TDTR) to map the thermal conductance of the oxide layer and the thermal conductivity of the SiC SiC composite with a spatial resolution of 3 {mu}m. Heterodyne detection using a 50 kHz modulated probe beam and a 10 MHz modulated pump suppresses the coherent pick-up and enables faster data acquisition than what has previously been possible using sequential demodulation. By analyzing the noise of the measured signals, we find that in the limit of small integration time constants or low laser powers, the dominant source of noise is the input noise of the preamplifier. The thermal conductance of the oxide that forms on the fiber region is lower than the oxide on the matrix due to small differences in thickness and thermal conductivity.
The doping dependence of dry thermal oxidation rates in n-type 4H-SiC was investigated. The oxidation was performed in the temperature range 1000C to 1200C for samples with nitrogen doping in the range of 6.5e15/cm3 to 9.3e18/cm3, showing a clear doping dependence. Samples with higher doping concentrations displayed higher oxidation rates. The results were interpreted using a modified Deal-Grove model. Linear and parabolic rate constants and activation energies were extracted. Increasing nitrogen led to an increase in linear rate constant pre-exponential factor from 10-6m/s to 10-2m/s and the parabolic rate constant pre-exponential factor from 10e9m2/s to 10e6m2/s. The increase in linear rate constant was attributed to defects from doping-induced lattice mismatch, which tend to be more reactive than bulk crystal regions. The increase in the diffusion-limited parabolic rate constant was attributed to degradation in oxide quality originating from the doping-induced lattice mismatch. This degradation was confirmed by the observation of a decrease in optical density of the grown oxide films from 1.4 to 1.24. The linear activation energy varied from 1.6eV to 2.8eV, while the parabolic activation energy varied from 2.7eV to 3.3eV, increasing with doping concentration. These increased activation energies were attributed to higher nitrogen content, leading to an increase in effective bond energy stemming from the difference in C-Si (2.82eV) and Si-N (4.26eV) binding energies. This work provides crucial information in the engineering of SiO2 dielectrics for SiC MOS structures, which typically involve regions of very different doping concentrations, and suggests that thermal oxidation at high doping concentrations in SiC may be defect mediated.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا