Do you want to publish a course? Click here

Doping Dependence of Thermal Oxidation on n-type 4H-SiC

107   0   0.0 ( 0 )
 Added by Biplob Daas
 Publication date 2010
  fields Physics
and research's language is English




Ask ChatGPT about the research

The doping dependence of dry thermal oxidation rates in n-type 4H-SiC was investigated. The oxidation was performed in the temperature range 1000C to 1200C for samples with nitrogen doping in the range of 6.5e15/cm3 to 9.3e18/cm3, showing a clear doping dependence. Samples with higher doping concentrations displayed higher oxidation rates. The results were interpreted using a modified Deal-Grove model. Linear and parabolic rate constants and activation energies were extracted. Increasing nitrogen led to an increase in linear rate constant pre-exponential factor from 10-6m/s to 10-2m/s and the parabolic rate constant pre-exponential factor from 10e9m2/s to 10e6m2/s. The increase in linear rate constant was attributed to defects from doping-induced lattice mismatch, which tend to be more reactive than bulk crystal regions. The increase in the diffusion-limited parabolic rate constant was attributed to degradation in oxide quality originating from the doping-induced lattice mismatch. This degradation was confirmed by the observation of a decrease in optical density of the grown oxide films from 1.4 to 1.24. The linear activation energy varied from 1.6eV to 2.8eV, while the parabolic activation energy varied from 2.7eV to 3.3eV, increasing with doping concentration. These increased activation energies were attributed to higher nitrogen content, leading to an increase in effective bond energy stemming from the difference in C-Si (2.82eV) and Si-N (4.26eV) binding energies. This work provides crucial information in the engineering of SiO2 dielectrics for SiC MOS structures, which typically involve regions of very different doping concentrations, and suggests that thermal oxidation at high doping concentrations in SiC may be defect mediated.



rate research

Read More

The p-type doping efficiency of 4H silicon carbide (4H-SiC) is rather low due to the large ionization energies of p-type dopants. Such an issue impedes the exploration of the full advantage of 4H-SiC for semiconductor devices. In this letter, we show that co-doping group-IVB elements effectively decreases the ionization energy of the most widely used p-type dopant, i. e., aluminum (Al), through the Coulomb repulsion between the energy levels of group-IVB elements and that of Al in 4H-SiC. Among group-IVB elements Ti has the most prominent effectiveness. Ti decreases the ionization energy of Al by nearly 50%, leading to a value as low as ~ 0.13 eV. As a result, the ionization rate of Al with Ti co-doping is up to ~ 5 times larger than that without co-doping at room temperature when the doping concentration is up to 1018 cm-3. This work may encourage the experimental co-doping of group-IB elements such as Ti and Al to significantly improve the p-type doping efficiency of 4H-SiC.
This communication presents a comparative study on the charge transport (in transient and steady state) in bulk n-type doped SiC-polytypes: 3C-SiC, 4H-SiC and 6H-SiC. The time evolution of the basic macrovariables: the electron drift velocity and the non-equilibrium temperature are obtained theoretically by using a Non-Equilibrium Quantum Kinetic Theory, derived from the method of Nonequilibrium Statistical Operator (NSO). The dependence on the intensity and orientation of the applied electric field of this macrovariables and mobility are derived and analyzed. From the results obtained in this paper, the most attractive of these semiconductors for applications requiring greater electronic mobility is the polytype 4H-SiC with the electric field applied perpendicular to the c-axis.
We have performed electronic state calculations to clarify the initial stage of the oxidation of the Si- and C-faces in 4H-SiC based on the density-functional theory. We investigate how each Si and C atomic site is oxidized on C- and Si-face, and explore most probable reaction pathways, corresponding energy barriers, and possible defects generated during the oxidation. We have found that carbon annihilation process is different between on Si- and on C-face, and this difference causes different defects in interface; In C-face case, (1), carbon atoms are dissociated directly from the substrate as CO molecules. (2), after CO dissociation, 3-fold coordinated oxygen atoms (called Y-lid) are observed at the interface. (3), high density of C-dangling bonds can remain at the interface. In Si-face case, (1), C atoms inevitably form carbon nano clusters (composed of a few atoms) in interface to reduce the number of dangling bonds there. Moreover, we have found that the carbon nano clusters are composed of not only single but also double chemical bonds. (2), We have observed that CO molecules are dissociated from the carbon nano clusters in MD simulations. Furthermore, we have investigated whether H$_2$ and NO molecules react with the defects found in this study.
We present a structural analysis of the graphene-4HSiC(0001) interface using surface x-ray reflectivity. We find that the interface is composed of an extended reconstruction of two SiC bilayers. The interface directly below the first graphene sheet is an extended layer that is more than twice the thickness of a bulk SiC bilayer (~1.7A compared to 0.63A). The distance from this interface layer to the first graphene sheet is much smaller than the graphite interlayer spacing but larger than the same distance measured for graphene grown on the (000-1) surface, as predicted previously by ab intio calculations.
The electrical behavior of Ni Schottky barrier formed onto heavily doped (ND>1019 cm-3) n-type phosphorous implanted silicon carbide (4H-SiC) was investigated, with a focus on the current transport mechanisms in both forward and reverse bias. The forward current-voltage characterization of Schottky diodes showed that the predominant current transport is a thermionic-field emission mechanism. On the other hand, the reverse bias characteristics could not be described by a unique mechanism. In fact, under moderate reverse bias, implantation-induced damage is responsible for the temperature increase of the leakage current, while a pure field emission mechanism is approached with bias increasing. The potential application of metal/4H-SiC contacts on heavily doped layers in real devices are discussed.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا