Do you want to publish a course? Click here

Thermal Conductivity Mapping of Oxidized SiC SiC Composites by Time Domain Thermoreflectance with Heterodyne Detection

257   0   0.0 ( 0 )
 Added by Zhe Cheng
 Publication date 2021
  fields Physics
and research's language is English




Ask ChatGPT about the research

Silicon carbide silicon carbide (SiC SiC) composites are often used in oxidizing environments at high temperatures. Measurements of the thermal conductance of the oxide layer provide a way to better understand the oxidation process with high spatial resolution. We use time domain thermoreflectance (TDTR) to map the thermal conductance of the oxide layer and the thermal conductivity of the SiC SiC composite with a spatial resolution of 3 {mu}m. Heterodyne detection using a 50 kHz modulated probe beam and a 10 MHz modulated pump suppresses the coherent pick-up and enables faster data acquisition than what has previously been possible using sequential demodulation. By analyzing the noise of the measured signals, we find that in the limit of small integration time constants or low laser powers, the dominant source of noise is the input noise of the preamplifier. The thermal conductance of the oxide that forms on the fiber region is lower than the oxide on the matrix due to small differences in thickness and thermal conductivity.



rate research

Read More

SiC is a robust semiconductor material considered ideal for high-power application due to its material stability and large bulk thermal conductivity defined by the very fast phonons. In this paper, however, we show that both material-interface scattering and total-internal reflection significantly limit the SiC-nanostructure phonon transport and hence the heat dissipation in a typical device. For simplicity we focus on planar SiC nanostructures and calculate the thermal transport both parallel to the layers in a substrate/SiC/oxide heterostructure and across a SiC/metal gate or contact. We find that the phonon-interface scattering produces a heterostructure thermal conductivity significantly smaller than what is predicted in a traditional heat-transport calculation. We also document that the high-temperature heat flow across the metal/SiC interface is limited by total-internal reflection effects and maximizes with a small difference in the metal/SiC sound velocities.
Thermal resistances from interfaces impede heat dissipation in micro/nanoscale electronics, especially for high-power electronics. Despite the growing importance of understanding interfacial thermal transport, advanced thermal characterization techniques which can visualize thermal conductance across buried interfaces, especially for nonmetal-nonmetal interfaces, are still under development. This work reports a dual-modulation-frequency TDTR mapping technique to visualize the thermal conduction across buried semiconductor interfaces for beta-Ga2O3-SiC samples. Both the beta-Ga2O3 thermal conductivity and the buried beta-Ga2O3-SiC thermal boundary conductance (TBC) are visualized for an area of 200 um x 200 um. Areas with low TBC values ( smaller than 20 MW/m2-K) are successfully identified on the TBC map, which correspond to weakly bonded interfaces caused by high-temperature annealing. The steady-state temperature rise (detector voltage), usually ignored in TDTR measurements, is found to be able to probe TBC variations of the buried interfaces without the limit of thermal penetration depth. This technique can be applied to detect defects/voids in deeply buried heterogeneous interfaces non-destructively, and also opens a door for the visualization of thermal conductance in nanoscale nonhomogeneous structures.
An increasing number of two-dimensional (2D) materials have already been achieved experimentally or predicted theoretically, which have potential applications in nano- and opto-electronics. Various applications for electronic devices are closely related to their thermal transport properties. In this work, the strain dependence of phonon transport in monolayer SiC with a perfect planar hexagonal honeycomb structure is investigated by solving the linearized phonon Boltzmann equation. It is found that room-temperature lattice thermal conductivity ($kappa_L$) of monolayer SiC is two orders of magnitude lower than that of graphene. The low $kappa_L$ is due to small group velocities and short phonon lifetimes, which can also be explained by polarized covalent bond due to large charge transfer from Si to C atoms. In considered strain range, it is proved that the SiC monolayer is mechanically and dynamically stable. With increased tensile strain, the $kappa_L$ of SiC monolayer shows an unusual nonmonotonic up-and-down behavior, which is due to the competition between the change of phonon group velocities and phonon lifetimes of low frequency phonon modes. At low strains ($<$8%), the phonon lifetimes enhancement induces the increased $kappa_L$, while at high strains ($>$8%) the reduction of group velocities as well as the decrease of the phonon lifetimes are the major mechanism responsible for decreased $kappa_L$. Our works further enrich studies on phonon transports of 2D materials with a perfect planar hexagonal honeycomb structure, and motivate farther experimental studies.
The minimization of electronics makes heat dissipation of related devices an increasing challenge. When the size of materials is smaller than the phonon mean free paths, phonons transport without internal scatterings and laws of diffusive thermal conduction fail, resulting in significant reduction in the effective thermal conductivity. This work reports, for the first time, the temperature dependent thermal conductivity of doped epitaxial 6H-SiC and monocrystalline porous 6H-SiC below room temperature probed by time-domain thermoreflectance. Strong quasi-ballistic thermal transport was observed in these samples, especially at low temperatures. Doping and structural boundaries were applied to tune the quasi-ballistic thermal transport since dopants selectively scatter high-frequency phonons while boundaries scatter phonons with long mean free paths. Exceptionally strong phonon scattering by boron dopants are observed, compared to nitrogen dopants. Furthermore, orders of magnitude reduction in the measured thermal conductivity was observed at low temperatures for the porous 6H-SiC compared to the epitaxial 6H-SiC. Finally, first principles calculations and a simple Callaway model are built to understand the measured thermal conductivities. Our work sheds light on the fundamental understanding of thermal conduction in technologically-important wide bandgap semiconductors such as 6H-SiC and will impact applications such as thermal management of 6H-SiC-related electronics and devices.
This communication presents a comparative study on the charge transport (in transient and steady state) in bulk n-type doped SiC-polytypes: 3C-SiC, 4H-SiC and 6H-SiC. The time evolution of the basic macrovariables: the electron drift velocity and the non-equilibrium temperature are obtained theoretically by using a Non-Equilibrium Quantum Kinetic Theory, derived from the method of Nonequilibrium Statistical Operator (NSO). The dependence on the intensity and orientation of the applied electric field of this macrovariables and mobility are derived and analyzed. From the results obtained in this paper, the most attractive of these semiconductors for applications requiring greater electronic mobility is the polytype 4H-SiC with the electric field applied perpendicular to the c-axis.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا