Do you want to publish a course? Click here

Oscillatory Thickness Dependence of the Coercive Field in Magnetic 3D Anti-Dot Arrays

61   0   0.0 ( 0 )
 Added by Alexander Zhukov
 Publication date 2004
  fields Physics
and research's language is English




Ask ChatGPT about the research

We present studies on magnetic nano-structures with 3D architectures, fabricated using electrodeposition in the pores of well-ordered templates prepared by self-assembly of polystyrene latex spheres. The coercive field is found to demonstrate an oscillatory dependence on film thickness reflecting the patterning transverse to the film plane. Our results demonstrate that 3D patterned magnetic materials are prototypes of a new class of geometrical multilayer structures in which the layering is due to local shape effects rather then compositional differences.



rate research

Read More

A method, based on the Neel-Brown model of thermally activated magnetization reversal of a magnetic single-domain particle, is proposed to study the field sweep rate dependence of the coercive field of single-molecule magnets (SMMs). The application to Mn12 and Mn84 SMMs allows the determination of the important parameters that characterize the magnetic properties: the energy barrier, the magnetic anisotropy constant, the spin, tau_0, and the crossover temperature from the classical to the quantum regime. The method may be particularly valuable for large SMMs that do not show quantum tunneling steps in the hysteresis loops.
In a Weyl orbit, the Fermi arc surface states on opposite surfaces of the topological semimetal are connected through the bulk Weyl or Dirac nodes. Having a real-space component, these orbits accumulate a sample-size-dependent phase. Following recent work on the three-dimensional Dirac semimetal cadmium arsenide (Cd3As2), we have sought evidence for this thickness-dependent effect in quantum oscillations and quantum Hall plateaus in (112)-oriented Cd3As2 thin films grown by molecular beam epitaxy. We compare quantum transport in films of varying thickness at apparently identical gate-tuned carrier concentrations and find no clear dependence of the relative phase of the quantum oscillations on the sample thickness. We show that small variations in carrier densities, difficult to detect in low-field Hall measurements, lead to shifts in quantum oscillations that are commensurate with previously reported phase shifts. Future claims of Weyl orbits based on the thickness dependence of quantum transport data require additional studies that demonstrate that these competing effects have been disentangled.
Extraordinary optical transmission is observed due to the excitation of surface plasmon polaritons (SPPs) in 2-Dimensional hexagonal anti-dot patterns of pure Ni thin films, grown on sapphire substrates. A strong enhancement of the polar Kerr rotation is recorded at the surface plasmon related transmission maximum. Angular resolved reflectivity measurements under an applied field, reveal an enhancement and a shift of the normalized reflectivity difference upon reversal of the magnetic saturation (transverse magneto-optical Kerr effect-TMOKE). The change of the TMOKE signal clearly shows the magnetic field modulation of the dispersion relation of SPPs launched in a 2D patterned ferromagnetic Ni film.
The excitation of surface plasmons in magnetic nano-structures can strongly influence their magneto-optical properties. Here, we use photoemission electron microscopy to map the spatial distribution of the electric near-field on a nano-patterned magnetic surface that supports plasmon polaritons. By using different photon energies and polarization states of the incident light we reveal that the electric near-field is either concentrated in spots forming a hexagonal lattice with the same symmetry as the Ni nano-pattern or in stripes oriented along the $Gamma$-K direction of the lattice and perpendicular to the polarization direction. We show that the polarization-dependent near-field enhancement on the patterned surface is directly correlated to both the excitation of surface plasmon polaritons on the patterned surface as well as the enhancement of the polar magneto-optical Kerr effect.
Electron states in a inhomogeneous Ge/Si quantum dot array with groups of closely spaced quantum dots were studied by conventional continuous wave ($cw$) ESR and spin-echo methods. We find that the existence of quantum dot groups allows to increase the spin relaxation time in the system. Created structures allow us to change an effective localization radius of electrons by external magnetic field. With the localization radius close to the size of a quantum dot group, we obtain fourfold increasing spin relaxation time $T_1$, as compared to conventional homogeneous quantum dot arrays. This effect is attributed to averaging of local magnetic fields related to nuclear spins $^{29}$Si and stabilization of $S_z$-polarization during electron back-and-forth motion within a quantum dot group.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا