No Arabic abstract
We present a detailed analytical and numerical analysis of the nuclear spin dynamics in parabolic quantum wells. The shallow potential of parabolic quantum wells permits substantial modification of the electronic wave function in small electric fields. The nuclear spin relaxation via the hyperfine interaction depends on the electronic local density of states, therefore the local nuclear relaxation time depends sensitively on the electric field. For an inhomogeneous nuclear magnetization, such as generated by dynamic nuclear polarization, the total nuclear magnetization dynamics can similarly be altered. We examine this effect quantitatively and the effect of temperature, field, well thickness, and nuclear spin diffusion.
In PbTe wide parabolic quantum wells (WPQW) a plateau-like structure is observed in the Hall resistance, which corresponds to the Shubnikov-de Haas oscillations in the same manner as known from the quantum Hall effect. At the same time a non-local signal is observed which corresponds to the structure in Rxx and Rxy. We find a striking correspondence between a standard quantum Hall system and this quasi 3D WPQW system.
In this paper we will review Exciton Spin Dynamics in Semiconductor Quantum Wells. The spin properties of excitons in nanostructures are determined by their fine structure. We will mainly focus in this review on GaAs and InGaAs quantum wells which are model systems.
Organic-inorganic layered perovskites are two-dimensional quantum wells with layers of lead-halide octahedra stacked between organic ligand barriers. The combination of their dielectric confinement and ionic sublattice results in excitonic excitations with substantial binding energies that are strongly coupled to the surrounding soft, polar lattice. However, the ligand environment in layered perovskites can significantly alter their optical properties due to the complex dynamic disorder of soft perovskite lattice. Here, we observe the dynamic disorder through phonon dephasing lifetimes initiated by ultrafast photoexcitation employing high-resolution resonant impulsive stimulated Raman spectroscopy of a variety of ligand substitutions. We demonstrate that vibrational relaxation in layered perovskite formed from flexible alkyl-amines as organic barriers is fast and relatively independent of the lattice temperature. Relaxation in aromatic amine based layered perovskite is slower, though still fast relative to pure inorganic lead bromide lattices, with a rate that is temperature dependent. Using molecular dynamics simulations, we explain the fast rates of relaxation by quantifying the large anharmonic coupling of the optical modes with the ligand layers and rationalize the temperature independence due to their amorphous packing. This work provides a molecular and time-domain depiction of the relaxation of nascent optical excitations and opens opportunities to understand how they couple to the complex layered perovskite lattice, elucidating design principles for optoelectronic devices.
Nuclear-spin diffusion in double quantum wells (QWs) is examined by using dynamic nuclear polarization (DNP) at a Landau level filling factor $ u=2/3$ spin phase transition (SPT). The longitudinal resistance increases during the DNP of one of the two QW (the polarization QW) by means of a large applied current and starts to decrease just after the termination of the DNP. On the other hand, the longitudinal resistance of the other QW (the detection QW) continuously increases for approximately 2h after the termination of the DNP of the polarization QW. It is therefore concluded that the nuclear spins diffuse from the polarization QW to the detection QW. The time evolution of the longitudinal resistance of the polarization QW is explained mainly by the nuclear-spin diffusion in the in-plane direction. In contrast, that of the detection QW manifests much slower nuclear diffusion in the perpendicular direction through the AlGaAs barrier.
Nuclear spin coherence and relaxation dynamics of all constituent isotopes of an n-doped CdTe/(Cd,Mg)Te quantum well structure are studied employing optically detected nuclear magnetic resonance. Using time-resolved pump-probe Faraday ellipticity, we generate and detect the coherent spin dynamics of the resident electrons. The photogenerated electron spin polarization is transferred into the nuclear spin system, which becomes polarized and acts back on the electron spins as the Overhauser field. Under the influence of resonant radio frequency pulses, we trace the coherent spin dynamics of the nuclear isotopes $^{111}$Cd, $^{113}$Cd, and $^{125}$Te. We measure nuclear Rabi oscillations, the inhomogeneous dephasing time $T_2^*$, the spin coherence time $T_2$, and the longitudinal relaxation time $T_1$. Furthermore, we investigate the influence of the laser excitation and the corresponding electron spin polarization on the nuclear spin relaxation time and find a weak extension of this time induced by interaction with the electron spins.