Do you want to publish a course? Click here

Edge Channel Dominated Magnetotransport in PbTe Wide Parabolic Quantum Wells

95   0   0.0 ( 0 )
 Added by Josef Oswald
 Publication date 1997
  fields Physics
and research's language is English




Ask ChatGPT about the research

In PbTe wide parabolic quantum wells (WPQW) a plateau-like structure is observed in the Hall resistance, which corresponds to the Shubnikov-de Haas oscillations in the same manner as known from the quantum Hall effect. At the same time a non-local signal is observed which corresponds to the structure in Rxx and Rxy. We find a striking correspondence between a standard quantum Hall system and this quasi 3D WPQW system.



rate research

Read More

312 - J. Oswald , G.Span , A. Homer 1997
We present magneto transport experiments of quasi 3D PbTe wide quantum wells. A plateau-like structure in the Hall resistance is observed, which corresponds to the Shubnikov de Haas oscillations in the same manner as known from the quantum Hall effect. The onsets of plateaux in Rxy do not correspond to 2D filling factors but coincide with the occupation of 3D (bulk-) Landau levels. At the same time a non-local signal is observed which corresponds to the structure in Rxx and Rxy and fulfils exactly the Onsager-Casimir relation (Rij,kl(B) = Rkl,ij(-B)). We explain the behaviour in terms of edge channel transport which is controlled by a permanent backscattering across a system of percolative EC - loops in the bulk region. Long range potential fluctuations with an amplitude of the order of the subband splitting are explained to play an essential role in this electron system.
We present a detailed analytical and numerical analysis of the nuclear spin dynamics in parabolic quantum wells. The shallow potential of parabolic quantum wells permits substantial modification of the electronic wave function in small electric fields. The nuclear spin relaxation via the hyperfine interaction depends on the electronic local density of states, therefore the local nuclear relaxation time depends sensitively on the electric field. For an inhomogeneous nuclear magnetization, such as generated by dynamic nuclear polarization, the total nuclear magnetization dynamics can similarly be altered. We examine this effect quantitatively and the effect of temperature, field, well thickness, and nuclear spin diffusion.
We report the magnetotransport properties of HoSb, a semimetal with antiferromagnetic ground state. HoSb shows extremely large magnetoresistance (XMR) and Shubnikov-de Haas (SdH) oscillation at low temperature and high magnetic field. Different from previous reports in other rare earth monopnictides, kinks in $rho(B)$ and $rho_{xy}(B)$ curves and the field dependent resistivity plateau are observed in HoSb, which result from the magnetic phase transitions. The fast Fourier transform analysis of the SdH oscillation reveals the split of Fermi surfaces induced by the nonsymmetric spin-orbit interaction. The Berry phase extracted from SdH oscillation indicates the possible nontrivial electronic structure of HoSb in the presence of magnetic field. The Hall measurements suggest that the XMR originates from the electron-hole compensation and high mobility.
The nature of the fractional quantum Hall effect at $ u=1/2$ observed in wide quantum wells almost three decades ago is still under debate. Previous studies have investigated it by the variational Monte Carlo method, which makes the assumption that the transverse wave function and the gap between the symmetric and antisymmetric subbands obtained in a local density approximation at zero magnetic field remain valid even at high perpendicular magnetic fields; this method also ignores the effect of Landau level mixing. We develop in this work a three-dimensional fixed phase Monte Carlo method, which gives, in a single framework, the total energies of various candidate states in a finite width quantum well, including Landau level mixing, directly in a large magnetic field. This method can be applied to one-component states, as well two-component states in the limit where the symmetric and antisymmetric bands are nearly degenerate. Our three-dimensional fixed-phase diffusion Monte Carlo calculations suggest that the observed 1/2 fractional quantum Hall state in wide quantum wells is likely to be the one-component Pfaffian state supporting non-Abelian excitations. We hope that this will motivate further experimental studies of this state.
We present a theoretical study of the electronic thermoelectric power of a semiconductor parabolic quantum well in a magnetic field. The case of a longitudinal magnetic field, with respect to the temperature gradient, has been considered. The calculations were carried out taking into account spin-splitting of the dimensionally quantized electronic energy levels. It has been shown that in the region of strong confinement the thermoelectric power decreases with increasing magnetic field, which is related to the downward shift of the lower Zeeman-split spin subband.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا