Do you want to publish a course? Click here

Anisotropic properties of MgB2 by torque magnetometry

70   0   0.0 ( 0 )
 Added by Manuel Angst
 Publication date 2003
  fields Physics
and research's language is English




Ask ChatGPT about the research

Anisotropic properties of superconducting MgB2 obtained by torque magnetometry are compared to theoretical predictions, concentrating on two issues. Firstly, the angular dependence of Hc2 is shown to deviate close to Tc from the dependence assumed by anisotropic Ginzburg-Landau theory. Secondly, from the evaluation of torque vs angle curves it is concluded that the anisotropy of the penetration depth gamma_lambda has to be substantially higher at low temperature than theoretical estimates, at least in fields higher than 0.2 T.



rate research

Read More

213 - Yu. Eltsev , S. Lee , K. Nakao 2002
In-plane electrical transport properties of MgB2 single crystals grown under high pressure of 4-6 GPa and temperature of 1400-1700oC in Mg-B-N system have been measured. For all specimens we found sharp superconducting transition around 38.1-38.3K with transition width within 0.2-0.3K. Estimated resistivity value at 40K is about 1 mkOhmcm and resistivity ratio R(273K)/R(40K) of about 4.9. Results of measurements in magnetic field up to 5.5T perpendicular to Mg and B planes and up to 9T in parallel orientation show temperature dependent anisotropy of the upper critical field with anisotropy ratio increasing from 2.2 close to Tc up to about 3 below 30K. Strong deviation of the angular dependence of Hc2 from anisotropic mass model has been also found.
76 - M. Xu , H. Kitazawa , Y. Takano 2001
The discovery of superconductor in magnesium diboride MgB2 with high Tc (39 K) has raised some challenging issues; whether this new superconductor resembles a high temperature cuprate superconductor(HTS) or a low temperature metallic superconductor; which superconducting mechanism, a phonon- mediated BCS or a hole superconducting mechanism or other new exotic mechanism may account for this superconductivity; and how about its future for applications. In order to clarify the above questions, experiments using the single crystal sample are urgently required. Here we have first succeeded in obtaining the single crystal of this new MgB2 superconductivity, and performed its electrical resistance and magnetization measurements. Their experiments show that the electronic and magnetic properties depend on the crystallographic direction. Our results indicate that the single crystal MgB2 superconductor shows anisotropic superconducting properties and thus can provide scientific basis for the research of its superconducting mechanism and its applications.
We investigated the superconducting fluctuation in FeSe, which is assumed to be located in the BCS--BEC crossover region, via magnetic torque measurements. In our method, the absolute cantilever displacement is measured by detecting the interference intensity of the Fabry--Perot cavity formed between the cantilever and optical fiber. Our findings are totally different from the results of the previous torque magnetometry using a piezoresistive cantilever; the giant fluctuation diamagnetism related to the BCS--BEC crossover does not exist. Instead, a considerably smaller fluctuation signal originating from the vortex liquid was observed that showed a qualitatively similar behavior to those in cuprate superconductors. We also discuss the inconsistency between our torque data and the existence of a pseudogap proposed by an NMR experiment.
72 - S.Lee , H.Mori , T.Masui 2001
Here we report the growth of sub-millimeter MgB2 single crystals of various shapes under high pressure in Mg-B-N system. Structure refinement using a single-crystal X-ray diffraction analysis gives lattice parameters a=3.0851(5) A and c=3.5201(5) A with small reliability factors (Rw =0.025, R=0.018), which enables us to analyze the Fourier and Fourier difference maps. The maps clearly show the B sp2 orbitals and covalency of the B-B bonds. The sharp superconducting transitions at Tc =38.1-38.3K were obtained in both magnetization (DTc =0.6K) and resistivity (DTc <0.3K) measurements. Resistivity measurements with magnetic fields applied parallel and perpendicular to the Mg and B sheets reveal the anisotropic nature of this compound, with upper critical field anisotropy ratio of about 2.7.
High-quality epitaxial MgB2 thin films prepared by pulsed laser deposition with Tc = 39 K offer the opportunity to study the anisotropy and robustness of the superconducting state in magnetic fields. We measure the in-plane electrical resistivity of the films in magnetic fields to 60T and estimate the superconducting upper critical field Hc(0) = 24 +- 3 T for field oriented along the c-axis, and Hab(0) = 30 +- 2 T for field in the plane of the film. We find the zero-temperature coherence lengths xi_c(0) = 30 A and xi_ab(0) = 37 A to be shorter than the calculated electronic mean free path l = 100 +- 50 A, which places our films in the clean limit. The observation of such large upper critical fields from clean limit samples, coupled with the relatively small anisotropy, provides strong evidence of the viability of MgB2 as a technologically important superconductor.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا