Do you want to publish a course? Click here

Epitaxy of Fe3O4 on Si(001) by pulsed laser deposition using a TiN/MgO buffer layer

151   0   0.0 ( 0 )
 Added by Daniel Reisinger
 Publication date 2003
  fields Physics
and research's language is English




Ask ChatGPT about the research

Epitaxy of oxide materials on silicon (Si) substrates is of great interest for future functional devices using the large variety of physical properties of the oxides as ferroelectricity, ferromagnetism, or superconductivity. Recently, materials with high spin polarization of the charge carriers have become interesting for semiconductor-oxide hybrid devices in spin electronics. Here, we report on pulsed laser deposition of magnetite (Fe3O4) on Si(001) substrates cleaned by an in situ laser beam high temperature treatment. After depositing a double buffer layer of titanium nitride (TiN) and magnesium oxide (MgO), a high quality epitaxial magnetite layer can be grown as verified by RHEED intensity oscillations and high resolution x-ray diffraction.



rate research

Read More

84 - A. Heinrich , B. Renner , R. Lux 2003
Cu2Ta4O12 (CTaO) thin films were successfully deposited on Si(100) substrates by pulsed-laser deposition technique. The crystalline structure and the surface morphology of the CTaO thin films were strongly affected by substrate temperature, oxygen pressure and target - substrate distance. In general during deposition of CTaO the formation of a Ta2O5 phase appeared, on which CTaO grew with different orientations. We report on the experimental set-up, details for film deposition and the film properties determined by SEM, EDX and XRD.
239 - Y. Zhao , M. Ionescu , J. Horvat 2003
A series of MgB2 thin films were fabricated by pulsed laser deposition (PLD), doped with various amounts of Si up to a level of 18wt%. Si was introduced into the PLD MgB2 films by sequential ablation of a stoichiometric MgB2 target and a Si target. The doped films were deposited at 250 C and annealed in situ at 685 C for 1min. Up to a Si doping level of ~11wt%, the superconducting transition temperature (Tc) of the film does not change significantly, as compared to the control, undoped film. The magnetic critical current density (Jc) of the film at 5K was increased by 50% for a Si doping level of ~3.5wt%, as compared to the control film. Also, the irreversibility field of Si-doped MgB2 films (Hirr) at low temperature is higher than for the undoped film.
Crystalline Fe3O4/NiO bilayers were grown on MgO(001) substrates using reactive molecular beam epitaxy to investigate their structural properties and their morphology. The film thickness either of the Fe3O4 film or of the NiO film has been varied to shed light on the relaxation of the bilayer system. The surface properties as studied by x-ray photo electron spectroscopy and low energy electron diffraction show clear evidence of stoichiometric well-ordered film surfaces. Based on the kinematic approach x-ray diffraction experiments were completely analyzed. As a result the NiO films grow pseudomorphic in the investigated thickness range (up to 34nm) while the Fe3O4 films relax continuously up to the thickness of 50nm. Although all diffraction data show well developed Laue fringes pointing to oxide films of very homogeneous thickness, the Fe3O4-NiO interface roughens continuously up to 1nm root-mean-square roughness with increasing NiO film thickness while the Fe3O4 surface is very smooth independent on the Fe3O4 film thickness. Finally, the Fe3O4-NiO interface spacing is similar to the interlayer spacing of the oxide films while the NiO-MgO interface is expanded.
131 - D. Reisinger , B. Blass , J. Klein 2002
The use of oxide materials in oxide electronics requires their controlled epitaxial growth. Recently, it was shown that Reflection High Energy Electron Diffraction (RHEED) allows to monitor the growth of oxide thin films even at high oxygen pressure. Here, we report the sub-unit cell molecular or block layer growth of the oxide materials Sr2RuO4, MgO, and magnetite using Pulsed Laser Deposition (PLD) from stoichiometric targets. Whereas for perovskites such as SrTiO3 or doped LaMnO3 a single RHEED intensity oscillation is found to correspond to the growth of a single unit cell, in materials where the unit cell is composed of several molecular layers or blocks with identical stoichiometry, a sub-unit cell molecular or block layer growth is established resulting in several RHEED intensity oscillations during the growth of a single unit-cell.
The surface structure of SrTiO3(001) thin films homoepitaxially grown by PLD in step-flow mode was characterized using low temperature STM. It was found that one-dimensional (1D) TiOx-based nanostructures were formed on the thin film surface and their density increased with increasing thin film thickness. Most of the 1D nanostructures disappeared after a post-deposition annealing, indicating that this structure is metastable due to the nonequilibrium growth mode. The resulting surface after annealing exhibited similar features to that of a thinner film, having a domain structure with (2x1) and (1x2) reconstructions, but with fewer oxygen-vacancy-type defects. These results imply that the step-flow growth is likely to produce TiOx-rich surface and Ti deficiencies in the film. By the post-deposition annealing, the rich TiOx would diffuse from the surface into the film to compensate defects associated with Ti vacancies and oxygen vacancies, resulting in the stable surface structure with fewer oxygen vacancies. Thus, STM measurements can provide us with a microscopic picture of surface stoichiometry of thin films originating in the dynamics of the growth process, and can present a new approach for designing functional oxide films.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا