Do you want to publish a course? Click here

Phase diagram of YBa$_2$Cu$_3$O$_{7-y}$ at T$<$T$_c$ based on Cu(2) transverse nuclear relaxation

122   0   0.0 ( 0 )
 Added by Alexander Dooglav
 Publication date 2001
  fields Physics
and research's language is English




Ask ChatGPT about the research

Two maxima in transverse relaxation rate of Cu(2) nuclei in YBa$_2$Cu$_3$O$_{7-y}$ are observed, at T = 35 K and T = 47 K. Comparison of the $^{63}$Cu(2) and $^{65}$Cu(2) rates at T = 47 K indicates the magnetic character of relaxation. The enhancement at T = 47 K of fluctuating local magnetic fields perpendicular to the CuO$_2$ planes is connected with the critical fluctuations of orbital currents. Maximum at T = 35 K is connected with the appearance of inhomogeneous supeconducting phase. Together with data published to date, our experimental results allow to suggest a qualitatively new phase diagram of the superconducting phase.



rate research

Read More

Systematic measurements of the $^{63}$Cu(2) NQR line width were performed in underdoped YBa$_2$Cu$_3$O$_{7-y}$ samples over the temperature range 4.2 K $<T<300$ K. It was shown that the copper NQR line width monotonically increases upon lowering temperature in the below-critical region, resembling temperature behavior of the superconducting gap. The observed dependence is explained by the fact that the energy of a condensate of sliding charge-current states of the charge-density-wave type depends on the phase of order parameter. Calculations show that this dependence appears only at $T<T_c$. Quantitative estimates of the line broadening at $T<T_c$ agree with the measurement results.
We measure magnetic quantum oscillations in the underdoped cuprates YBa$_2$Cu$_3$O$_{6+x}$ with $x=0.61$, 0.69, using fields of up to 85 T. The quantum-oscillation frequencies and effective masses obtained suggest that the Fermi energy in the cuprates has a maximum at $papprox 0.11-0.12$. On either side, the effective mass may diverge, possibly due to phase transitions associated with the T=0 limit of the metal-insulator crossover (low-$p$ side), and the postulated topological transition from small to large Fermi surface close to optimal doping (high $p$ side).
Nematicity has emerged as a key feature of cuprate superconductors, but its link to other fundamental properties such as superconductivity, charge order and the pseudogap remains unclear. Here we use measurements of transport anisotropy in YBa$_2$Cu$_3$O$_y$ to distinguish two types of nematicity. The first is associated with short-range charge-density-wave modulations in a doping region near $p = 0.12$. It is detected in the Nernst coefficient, but not in the resistivity. The second type prevails at lower doping, where there are spin modulations but no charge modulations. In this case, the onset of in-plane anisotropy - detected in both the Nernst coefficient and the resistivity - follows a line in the temperature-doping phase diagram that tracks the pseudogap energy. We discuss two possible scenarios for the latter nematicity.
The possibility of enhancing desirable functional properties of complex materials by optical driving is motivating a series of studies of their nonlinear terahertz response. In high-Tc cuprates, large amplitude excitation of certain infrared-active lattice vibrations has been shown to induce transient features in the reflectivity suggestive of non-equilibrium superconductivity. Yet, a microscopic mechanism for these observations is still lacking. Here, we report measurements of time- and scattering-angle-dependent second-harmonic generation in YBa$_2$Cu$_3$O$_{6+x}$, taken under the same excitation conditions that result in superconductor-like terahertz reflectivity. We discover a three-order-of-magnitude amplification of a 2.5-terahertz electronic mode, which is unique because of its symmetry, momentum, and temperature dependence. A theory for parametric three-wave amplification of Josephson plasmons, which are assumed to be well-formed below T$_c$ but overdamped throughout the pseudogap phase, explains all these observations and provides a mechanism for non-equilibrium superconductivity. More broadly, our work underscores the role of parametric mode mixing to stabilize fluctuating orders in quantum materials.
297 - Hua Xu , Su Li , M. C. Sullivan 2009
We have studied the normal-to-superconducting phase transition in optimally-doped YBa$_2$Cu$_3$O$_{7-delta}$ in zero external magnetic field using a variety of different samples and techniques. Using DC transport measurements, we find that the dynamical critical exponent $z=1.54pm0.14$, and the static critical exponent $ u=0.66pm0.10$ for both films (when finite-thickness effects are included in the data analysis) and single crystals (where finite-thickness effects are unimportant). We also measured thin films at different microwave frequencies and at different powers, which allowed us to systematically probe different length scales to avoid finite-thickness effects. DC transport measurements were also performed on the films used in the microwave experiments to provide a further consistency check. These microwave and DC measurements yielded a value of z consistent with the other results, $z=1.55pm0.15$. The neglect of finite-thickness, finite-current, and finite-frequency effects may account for the wide ranges of values for $ u$ and $z$ previously reported in the literature.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا