Do you want to publish a course? Click here

Two types of nematicity in the phase diagram of the cuprate superconductor YBa$_2$Cu$_3$O$_y$

168   0   0.0 ( 0 )
 Publication date 2015
  fields Physics
and research's language is English




Ask ChatGPT about the research

Nematicity has emerged as a key feature of cuprate superconductors, but its link to other fundamental properties such as superconductivity, charge order and the pseudogap remains unclear. Here we use measurements of transport anisotropy in YBa$_2$Cu$_3$O$_y$ to distinguish two types of nematicity. The first is associated with short-range charge-density-wave modulations in a doping region near $p = 0.12$. It is detected in the Nernst coefficient, but not in the resistivity. The second type prevails at lower doping, where there are spin modulations but no charge modulations. In this case, the onset of in-plane anisotropy - detected in both the Nernst coefficient and the resistivity - follows a line in the temperature-doping phase diagram that tracks the pseudogap energy. We discuss two possible scenarios for the latter nematicity.



rate research

Read More

A central issue in the quest to understand the superconductivity in cuprates is the nature and origin of the pseudogap state, which harbours anomalous electronic states such as Fermi arc, charge density wave (CDW), and $d$-wave superconductivity. A fundamentally important, but long-standing controversial problem has been whether the pseudogap state is a distinct thermodynamic phase characterized by broken symmetries below the onset temperature $T^*$. Electronic nematicity, a fourfold ($C_4$) rotational symmetry breaking, has emerged as a key feature inside the pseudogap regime, but the presence or absence of a nematic phase transition and its relationship to the pseudogap remain unresolved. Here we report thermodynamic measurements of magnetic torque in the underdoped regime of orthorhombic YBa$_2$Cu$_3$O$_y$ with a field rotating in the CuO$_2$ plane, which allow us to quantify magnetic anisotropy with exceptionally high precision. Upon entering the pseudogap regime, the in-plane anisotropy of magnetic susceptibility increases after exhibiting a distinct kink at $T^*$. Our doping dependence analysis reveals that this anisotropy is preserved below $T^*$ even in the limit where the effect of orthorhombicity is eliminated. In addition, the excess in-plane anisotropy data show a remarkable scaling behaviour with respect to $T/T^*$ in a wide doping range. These results provide thermodynamic evidence that the pseudogap onset is associated with a second-order nematic phase transition, which is distinct from the CDW transition that accompanies translational symmetry breaking. This suggests that nematic fluctuations near the pseudogap phase boundary have a potential link to the strange metallic behaviour in the normal state, out of which high-$T_c$ superconductivity emerges.
102 - Jian Zhang , Z. F. Ding , C. Tan 2017
Evidence for intra-unit-cell (IUC) magnetic order in the pseudogap region of high-$T_c$ cuprates below a temperature $T^ast$ is found in several studies, but NMR and $mu$SR experiments do not observe the expected static local magnetic fields. It has been noted, however, that such fields could be averaged by fluctuations. Our measurements of muon spin relaxation rates in single crystals of YBa$_2$Cu$_3$O$_y$ reveal magnetic fluctuations of the expected order of magnitude that exhibit critical slowing down at $T^ast$. These results are strong evidence for fluctuating IUC magnetic order in the pseudogap phase.
The de Haas-van Alphen effect was observed in the underdoped cuprate YBa$_2$Cu$_3$O$_{6.5}$ via a torque technique in pulsed magnetic fields up to 59 T. Above an irreversibility field of $sim$30 T, the magnetization exhibits clear quantum oscillations with a single frequency of 540 T and a cyclotron mass of 1.76 times the free electron mass, in excellent agreement with previously observed Shubnikov-de Haas oscillations. The oscillations obey the standard Lifshitz-Kosevich formula of Fermi-liquid theory. This thermodynamic observation of quantum oscillations confirms the existence of a well-defined, close and coherent, Fermi surface in the pseudogap phase of cuprates.
75 - B. A. Gray , S. Middey , G. Conti 2016
The superconductor-to-insulator transition (SIT) induced by means such as external magnetic fields, disorder or spatial confinement is a vivid illustration of a quantum phase transition dramatically affecting the superconducting order parameter. In pursuit of a new realization of the SIT by interfacial charge transfer, we developed extremely thin superlattices composed of high $T_c$ superconductor YBa$_2$Cu$_3$O$_7$ (YBCO) and colossal magnetoresistance ferromagnet La$_{0.67}$Ca$_{0.33}$MnO$_3$ (LCMO). By using linearly polarized resonant X-ray absorption spectroscopy and magnetic circular dichroism, combined with hard X-ray photoelectron spectroscopy, we derived a complete picture of the interfacial carrier doping in cuprate and manganite atomic layers, leading to the transition from superconducting to an unusual Mott insulating state emerging with the increase of LCMO layer thickness. In addition, contrary to the common perception that only transition metal ions may response to the charge transfer process, we found that charge is also actively compensated by rare-earth and alkaline-earth metal ions of the interface. Such deterministic control of $T_c$ by pure electronic doping without any hindering effects of chemical substitution is another promising route to disentangle the role of disorder on the pseudo-gap and charge density wave phases of underdoped cuprates.
Two maxima in transverse relaxation rate of Cu(2) nuclei in YBa$_2$Cu$_3$O$_{7-y}$ are observed, at T = 35 K and T = 47 K. Comparison of the $^{63}$Cu(2) and $^{65}$Cu(2) rates at T = 47 K indicates the magnetic character of relaxation. The enhancement at T = 47 K of fluctuating local magnetic fields perpendicular to the CuO$_2$ planes is connected with the critical fluctuations of orbital currents. Maximum at T = 35 K is connected with the appearance of inhomogeneous supeconducting phase. Together with data published to date, our experimental results allow to suggest a qualitatively new phase diagram of the superconducting phase.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا