Do you want to publish a course? Click here

Magnetic quantum oscillations in YBa$_2$Cu$_3$O$_{6.61}$ and YBa$_2$Cu$_3$O$_{6.69}$ in fields of up to 85 T; patching the hole in the roof of the superconducting dome

113   0   0.0 ( 0 )
 Added by John Singleton
 Publication date 2009
  fields Physics
and research's language is English




Ask ChatGPT about the research

We measure magnetic quantum oscillations in the underdoped cuprates YBa$_2$Cu$_3$O$_{6+x}$ with $x=0.61$, 0.69, using fields of up to 85 T. The quantum-oscillation frequencies and effective masses obtained suggest that the Fermi energy in the cuprates has a maximum at $papprox 0.11-0.12$. On either side, the effective mass may diverge, possibly due to phase transitions associated with the T=0 limit of the metal-insulator crossover (low-$p$ side), and the postulated topological transition from small to large Fermi surface close to optimal doping (high $p$ side).



rate research

Read More

97 - H. A. Mook , Pengcheng Dai , 2001
Neutron Scattering measurements for YBa$_2$Cu$_3$O$_{6.6}$ have identified small magnetic moments that increase in strength as the temperature is reduced below $T^ast$ and further increase below $T_c$. An analysis of the data shows the moments are antiferromagnetic between the Cu-O planes with a correlation length of longer than 195 AA in the $a$-$b$ plane and about 35 AA along the c-axis. The origin of the moments is unknown, and their properties are discusssed both in terms of Cu spin magnetism and orbital bond currents.
Polarized and unpolarized neutron diffraction has been used to search for magnetic order in YBa$_2$Cu$_3$O$_{6+x}$ superconductors. Most of the measurements were made on a high quality crystal of YBa$_2$Cu$_3$O$_{6.6}$. It is shown that this crystal has highly ordered ortho-II chain order, and a sharp superconducting transition. Inelastic scattering measurements display a very clean spin-gap and pseudogap with any intensity at 10 meV being 50 times smaller than the resonance intensity. The crystal shows a complicated magnetic order that appears to have three components. A magnetic phase is found at high temperatures that seems to stem from an impurity with a moment that is in the $a$-$b$ plane, but disordered on the crystal lattice. A second ordering occurs near the pseudogap temperature that has a shorter correlation length than the high temperature phase and a moment direction that is at least partly along the c-axis of the crystal. Its moment direction, temperature dependence, and Bragg intensities suggest that it may stem from orbital ordering of the $d$-density wave (DDW) type. An additional intensity increase occurs below the superconducting transition. The magnetic intensity in these phases does not change noticeably in a 7 Tesla magnetic field aligned approximately along the c-axis. Searches for magnetic order in YBa$_2$Cu$_3$O$_{7}$ show no signal while a small magnetic intensity is found in YBa$_2$Cu$_3$O$_{6.45}$ that is consistent with c-axis directed magnetic order. The results are contrasted with other recent neutron measurements.
141 - A. Carrington , , E.A. Yelland 2007
In this paper we explore whether the quantum oscillation signals recently observed in ortho-II YBa$_2$Cu$_3$O$_{6.5}$ may be explained by conventional density functional band-structure theory. Our calculations show that the Fermi surface of YBa$_2$Cu$_3$O$_{6.5}$ is extremely sensitive to small shifts in the relative positions of the bands. With rigid band shifts of around 30 meV small tubular pockets of Fermi surface develop around the Y point in the Brillouin zone. The cross-sectional areas and band masses of the quantum oscillatory orbits on these pockets are close to those observed. The difference between the bandstructure of YBa$_2$Cu$_3$O$_{6.5}$ and YBa$_2$Cu$_4$O$_{8}$ are discussed.
The de Haas-van Alphen effect was observed in the underdoped cuprate YBa$_2$Cu$_3$O$_{6.5}$ via a torque technique in pulsed magnetic fields up to 59 T. Above an irreversibility field of $sim$30 T, the magnetization exhibits clear quantum oscillations with a single frequency of 540 T and a cyclotron mass of 1.76 times the free electron mass, in excellent agreement with previously observed Shubnikov-de Haas oscillations. The oscillations obey the standard Lifshitz-Kosevich formula of Fermi-liquid theory. This thermodynamic observation of quantum oscillations confirms the existence of a well-defined, close and coherent, Fermi surface in the pseudogap phase of cuprates.
75 - B. A. Gray , S. Middey , G. Conti 2016
The superconductor-to-insulator transition (SIT) induced by means such as external magnetic fields, disorder or spatial confinement is a vivid illustration of a quantum phase transition dramatically affecting the superconducting order parameter. In pursuit of a new realization of the SIT by interfacial charge transfer, we developed extremely thin superlattices composed of high $T_c$ superconductor YBa$_2$Cu$_3$O$_7$ (YBCO) and colossal magnetoresistance ferromagnet La$_{0.67}$Ca$_{0.33}$MnO$_3$ (LCMO). By using linearly polarized resonant X-ray absorption spectroscopy and magnetic circular dichroism, combined with hard X-ray photoelectron spectroscopy, we derived a complete picture of the interfacial carrier doping in cuprate and manganite atomic layers, leading to the transition from superconducting to an unusual Mott insulating state emerging with the increase of LCMO layer thickness. In addition, contrary to the common perception that only transition metal ions may response to the charge transfer process, we found that charge is also actively compensated by rare-earth and alkaline-earth metal ions of the interface. Such deterministic control of $T_c$ by pure electronic doping without any hindering effects of chemical substitution is another promising route to disentangle the role of disorder on the pseudo-gap and charge density wave phases of underdoped cuprates.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا