Do you want to publish a course? Click here

Formation of Black-Hole X-Ray Binaries with Low-Mass Donors

69   0   0.0 ( 0 )
 Added by Vassiliki Kalogera
 Publication date 1999
  fields Physics
and research's language is English




Ask ChatGPT about the research

The characteristics of black-hole X-ray binaries can be used to obtain information about their evolutionary history and the process of black-hole formation. In this paper I focus on systems with donor masses lower than the inferred black-hole masses. Current models for the evolution of hydrogen-rich, massive stars and of helium stars losing mass in a wind cannot explain the current sample of black-hole mass measurements. Assuming that the radial evolution of mass-losing massive stars is at least qualitatively accurate, I show that the properties of the BH companions lead to constraints on the masses of black-hole progenitors (at most twice the black-hole mass) and on the strength of winds in helium stars (fractional amount of mass lost smaller than about 50%). Constraints on common-envelope evolution are also derived.



rate research

Read More

79 - K. Alabarta 2021
Black hole low-mass X-ray binaries (BH LMXBs) evolve in a similar way during outburst. Based on the X-ray spectrum and variability, this evolution can be divided into three canonical states: low/hard, intermediate and high/soft state. BH LMXBs evolve from the low/hard to the high/soft state through the intermediate state in some outbursts (here called full outbursts). However, in other cases, BH LMXBs undergo outbursts in which the source never reaches the high/soft state, here called Failed-Transition outburst (FT outbursts). From a sample of 56 BH LMXBs undergoing 128 outbursts, we find that $sim$36% of these BH LMXBs experienced at least one FT outburst, and that FT outbursts represent $sim$33% of the outbursts of the sample, showing that these are common events. We compare all the available X-ray data of full and FT outbursts of BH LMXBs from RXTE/PCA, Swift/BAT and MAXI and find that FT and full outbursts cannot be distinguished from their X-ray light curves, HIDs or X-ray variability during the initial 10-60 days after the outburst onset. This suggests that both types of outbursts are driven by the same physical process. We also compare the optical and infrared (O/IR) data of FT and full outbursts of GX 339-4. We found that this system is generally brighter in O/IR bands before an FT outburst, suggesting that the O/IR flux points to the physical process that later leads to a full or an FT outburst. We discuss our results in the context of models that describe the onset and evolution of outbursts in accreting X-ray binaries.
The X-ray spectra of Low Mass X-ray Binaries (LMXB) can change on short time-scales, making it difficult to follow their spectral characteristics in detail through model fitting. Colour-colour (C-C) diagrams are therefore often used as alternative, model independent, tools to study the spectral variability of these sources. The INTEGRAL mission, with its high sensitivity, large field of view and good angular resolution, is well suited to study the hard X-ray properties of LMXBs. In particular the ISGRI imager on board of INTEGRAL allows the regular monitoring of the sources in the less frequently studied domain above 20 keV. In this proceeding, C-C diagrams have been made with data from the INTEGRAL public archive; a search is made for systematic differences in the C-C diagrams between black hole candidates (BH) and neutron stars (NS) in LMXBs using a moments analysis method.
A thin viscous accretion disc around a Kerr black hole, which is warped due to the Lense-Thirring (LT) effect, was shown to cause the spin axis of the black hole to precess and align with the outer disc. We calculate the total LT torque acting on the black hole, and compute the alignment and precession time-scales for both persistent and transient accretors. In our analysis, we consider the contribution of the inner disc, as it can stay misaligned with the black hole spin for a reasonable range of parameter values. We find that the alignment time-scale increases with a decrease in the Kerr parameter below a critical Kerr parameter value, contrary to earlier predictions. Besides, the time-scales are generally longer for transience than the time-scales calculated for persistent accretion. From our analysis of the transient case, we find that the black hole in the low mass X-ray binary (LMXB) 4U 1543-47 could be misaligned, whereas that in the LMXB XTE J1550-564 has aligned itself with the outer disc. The age of the LMXB H 1743-322 is estimated assuming a misaligned disc. We also find that the black hole in a typical Galactic LMXB can take a significantly longer time to align than what was estimated in the past. This may have an important implication on the measurement of black hole spin using the continuum X-ray spectral fitting method.
Studies of nearby galaxies reveal that roughly half of their low mass X-ray binary (LMXB) populations are associated with globular clusters (GCs). We have established that the LMXB hosting frequency is correlated to various GC properties such as mass and metallicity. While the X-ray luminosities of a few of the brightest LMXBs in GCs are consistent with the accreting object being a black hole (BH), the only definitive way to distinguish between a black hole and multiple superposed sources in a GC is to detect variability. We have discovered just such a variable 4x10^39 erg/s black hole X-ray binary in a low metallicity globular cluster in the halo of NGC 4472. The change in the X-ray spectrum between the bright and faint epochs suggests that the luminosity variation is due to eclipsing by a warped accretion disk. The optical spectrum of this source also reveals strong, broad, [O III] lambda 5007 and [O III] lambda 4959 emission. An analysis of the X-ray spectrum suggests that the [O III] lines are produced by the photoionization of a wind driven by a stellar mass black hole accreting mass at or above its Eddington luminosity. As it is dynamically implausible to form an accreting stellar mass BH system in a GC with an intermediate mass BH it appears that this massive globular cluster does not harbor an intermediate mass BH. The inferred mass of this BH falls well below the extrapolation of the well known M_BH-sigma and M_BH-M_Stellar relations to this GC. Therefore our analysis suggests that not all old, metal poor stellar systems form black holes consistent with these relations, which have been established for much more massive stellar systems.
92 - T. Fragos 2006
In recent years, an increasing number of proper motions have been measured for Galactic X-ray binaries. When supplemented with accurate determinations of the component masses, orbital period, and donor luminosity and effective temperature, these kinematical constraints harbor a wealth of information on the systems past evolution. The constraints on compact object progenitors and kicks derived from this are of immense value for understanding compact object formation and exposing common threads and fundamental differences between black hole and neutron star formation. Here, we present the results of such an analysis for the black hole X-ray binary XTE J1118+480. We present results from modeling the mass transfer phase, following the motion in the Galaxy back to the birth site of the black hole, and examining the dynamics of symmetric and asymmetric core-collapses of the black hole progenitor.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا