Do you want to publish a course? Click here

Failed-Transition outbursts in Black hole low-mass X-ray binaries

80   0   0.0 ( 0 )
 Publication date 2021
  fields Physics
and research's language is English
 Authors K. Alabarta




Ask ChatGPT about the research

Black hole low-mass X-ray binaries (BH LMXBs) evolve in a similar way during outburst. Based on the X-ray spectrum and variability, this evolution can be divided into three canonical states: low/hard, intermediate and high/soft state. BH LMXBs evolve from the low/hard to the high/soft state through the intermediate state in some outbursts (here called full outbursts). However, in other cases, BH LMXBs undergo outbursts in which the source never reaches the high/soft state, here called Failed-Transition outburst (FT outbursts). From a sample of 56 BH LMXBs undergoing 128 outbursts, we find that $sim$36% of these BH LMXBs experienced at least one FT outburst, and that FT outbursts represent $sim$33% of the outbursts of the sample, showing that these are common events. We compare all the available X-ray data of full and FT outbursts of BH LMXBs from RXTE/PCA, Swift/BAT and MAXI and find that FT and full outbursts cannot be distinguished from their X-ray light curves, HIDs or X-ray variability during the initial 10-60 days after the outburst onset. This suggests that both types of outbursts are driven by the same physical process. We also compare the optical and infrared (O/IR) data of FT and full outbursts of GX 339-4. We found that this system is generally brighter in O/IR bands before an FT outburst, suggesting that the O/IR flux points to the physical process that later leads to a full or an FT outburst. We discuss our results in the context of models that describe the onset and evolution of outbursts in accreting X-ray binaries.



rate research

Read More

Context. The disc instability model (DIM) successfully explains why many accreting compact binary systems exhibit outbursts, during which their luminosity increases by orders of magnitude. The DIM correctly predicts which systems should be transient and works regardless of whether the accretor is a black hole, a neutron star or a white dwarf. However, it has been known for some time that the outbursts of X-ray binaries (which contain neutron-star or black-hole accretors) exhibit hysteresis in the X-ray hardness-intensity diagram (HID). More recently, it has been shown that the outbursts of accreting white dwarfs also show hysteresis, but in a diagram combining optical, EUV and X-ray fluxes. Aims. We examine here the nature of the hysteresis observed in cataclysmic variables and low-mass X-ray binaries. Methods. We use the Hameury et al. (1998) code for modelling dwarf nova outbursts, and construct the hardness intensity diagram as predicted by the disc instability model. Results. We show explicitly that the standard DIM - modified only to account for disc truncation - can explain the hysteresis observed in accreting white dwarfs, but cannot explain that observed in X-ray binaries. Conclusions. The spectral evidence for the existence of different accretion regimes / components (disc, corona, jets, etc.) should be based only on wavebands that are specific to the innermost parts of the discs, i.e. EUV and X-rays, which is a difficult task because of interstellar absorption. The existing data, however, indicate that an EUV/X-ray hysteresis is present in SS Cyg.
Recurring outbursts associated with matter flowing onto compact stellar remnants (black-holes, neutron stars, white dwarfs) in close binary systems, provide strong test beds for constraining the poorly understood accretion process. The efficiency of angular momentum (and thus mass) transport in accretion discs, which has traditionally been encoded in the $alpha$-viscosity parameter, shapes the light-curves of these outbursts. Numerical simulations of the magneto-rotational instability that is believed to be the physical mechanism behind this transport find values of $alpha sim 0.1-0.2$ as required from observations of accreting white dwarfs. Equivalent $alpha$-viscosity parameters have never been estimated in discs around neutron stars or black holes. Here we report the results of an analysis of archival X-ray light-curves of twenty-one black hole X-ray binary outbursts. Applying a Bayesian approach for a model of accretion allows us to determine corresponding $alpha$-viscosity parameters, directly from the light curves, to be $alpha sim$0.2--1. This result may be interpreted either as a strong intrinsic rate of angular momentum transport in the disc, which can only be sustained by the magneto-rotational instability if a large-scale magnetic field threads the disc, or as a direct indication that mass is being lost from the disc through substantial mass outflows strongly shaping the X-ray binary outburst. Furthermore, the lack of correlation between our estimates of $alpha$-viscosity and accretion state implies that such outflows can remove a significant fraction of disc mass in all black hole X-ray binary accretion states, favouring magnetically-driven winds over thermally-driven winds that require specific radiative conditions.
Be/X-ray binary systems exhibit both periodic (Type I) X-ray outbursts and giant (Type II) outbursts, whose origin has remained elusive. We suggest that Type II X-ray outbursts occur when a highly misaligned decretion disk around the Be star becomes eccentric, allowing the compact object companion to capture a large amount of material at periastron. Using 3D smoothed particle hydrodynamics simulations we model the long term evolution of a representative Be/X-ray binary system. We find that periodic (Type I) X-ray outbursts occur when the neutron star is close to periastron for all disk inclinations. Type II outbursts occur for large misalignment angles and are associated with eccentricity growth that occurs on a timescale of about 10 orbital periods. Mass capture from the eccentric decretion disk results in an accretion disk around the neutron star whose estimated viscous time is long enough to explain the extended duration of Type II outbursts. Previous studies suggested that the outbursts are caused by a warped disk but our results suggest that this is not sufficient, the disk must be both highly misaligned and eccentric to initiate a Type II accretion event.
The characteristics of black-hole X-ray binaries can be used to obtain information about their evolutionary history and the process of black-hole formation. In this paper I focus on systems with donor masses lower than the inferred black-hole masses. Current models for the evolution of hydrogen-rich, massive stars and of helium stars losing mass in a wind cannot explain the current sample of black-hole mass measurements. Assuming that the radial evolution of mass-losing massive stars is at least qualitatively accurate, I show that the properties of the BH companions lead to constraints on the masses of black-hole progenitors (at most twice the black-hole mass) and on the strength of winds in helium stars (fractional amount of mass lost smaller than about 50%). Constraints on common-envelope evolution are also derived.
In black hole X-ray binaries, a misalignment between the spin axis of the black hole and the orbital angular momentum can occur during the supernova explosion that forms the compact object. In this letter we present population synthesis models of Galactic black hole X-ray binaries, and study the probability density function of the misalignment angle, and its dependence on our model parameters. In our modeling, we also take into account the evolution of misalignment angle due to accretion of material onto the black hole during the X-ray binary phase. The major factor that sets the misalignment angle for X-ray binaries is the natal kick that the black hole may receive at its formation. However, large kicks tend to disrupt binaries, while small kicks allow the formation of XRBs and naturally select systems with small misalignment angles. Our calculations predict that the majority (>67%) of Galactic field BH XRBs have rather small (>10 degrees) misalignment angles, while some systems may reach misalignment angles as high as ~90 degrees and even higher. This results is robust among all population synthesis models. The assumption of small small misalignment angles is extensively used to observationally estimate black hole spin magnitudes, and for the first time we are able to confirm this assumption using detailed population synthesis calculations.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا