Do you want to publish a course? Click here

On the Dynamics and Structure of Three-Dimensional Trans-Alfvenic Jets

61   0   0.0 ( 0 )
 Added by Alex Rosen
 Publication date 1999
  fields Physics
and research's language is English




Ask ChatGPT about the research

No English abstract

rate research

Read More

Observations of coronal jets increasingly suggest that local fragmentation and intermittency play an important role in the dynamics of these events. In this work we investigate this fragmentation in high-resolution simulations of jets in the closed-field corona. We study two realizations of the embedded-bipole model, whereby impulsive helical outflows are driven by reconnection between twisted and untwisted field across the domed fan plane of a magnetic null. We find that the reconnection region fragments following the onset of a tearing-like instability, producing multiple magnetic null points and flux-rope structures within the current layer. The flux ropes formed within the weak-field region in the center of the current layer are associated with blobs of density enhancement that become filamentary threads as the flux ropes are ejected from the layer, whereupon new flux ropes form behind them. This repeated formation and ejection of flux ropes provides a natural explanation for the intermittent outflows, bright blobs of emission, and filamentary structure observed in some jets. Additional observational signatures of this process are discussed. Essentially all jet models invoke reconnection between regions of locally closed and locally open field as the jet-generation mechanism. Therefore, we suggest that this repeated tearing process should occur at the separatrix surface between the two flux systems in all jets. A schematic picture of tearing-mediated jet reconnection in three dimensions is outlined.
We report on the results of a radio interferometric observation of NGC7027 in the CO J=2-1 and 13CO J=2-1 lines. The results are analyzed with morpho-kinematic models developed from the software tool Shape. Our goal is to reveal the morpho-kinematic properties of the central region of the nebula, and to explore the nature of unseen high-velocity jets that may have created the characteristic structure of the central region consisting of molecular and ionized components. A simple ellipsoidal shell model explains the intensity distribution around the systemic velocity, but the high velocity features deviate from the ellipsoidal model. Through the Shape automatic reconstruction model, we found a possible trail of a jet only in one direction, but no other possible holes were created by the passage of a jet.
We have determined the three-dimensional structure of the Magellanic Clouds and Magellanic Bridge using over $9,000$ Classical Cepheids (CCs) and almost $23,000$ RR~Lyrae (RRL) stars from the fourth phase of the OGLE project. For the CCs we calculated distances based on period-luminosity relations. CCs in the LMC are situated mainly in the bar that shows no offset from the plane of the LMC. The northern arm is also very prominent with an additional smaller arm. Both are located closer to us than the entire sample. The SMC has a non-planar structure that can be described as an ellipsoid extended almost along the line of sight. We also classified nine of our CCs as Magellanic Bridge objects. These Cepheids show a large spread in three-dimensions. For the RRL stars, we calculated distances based on photometric metallicities and theoretical relations. Both Magellanic Clouds revealed a very regular structure. We fitted triaxial ellipsoids to our LMC and SMC samples. In the LMC we noticed a very prominent, non-physical blend-artifact that prevented us from analyzing the central parts of this galaxy. We do not see any evidence of a bridge-like connection between the Magellanic Clouds.
The outflow velocity of jets produced by collisionless magnetic reconnection is shown to be reduced by the ion exhaust temperature in simulations and observations. We derive a scaling relationship for the outflow velocity based on the upstream Alfven speed and the parallel ion exhaust temperature, which is verified in kinetic simulations and observations. The outflow speed reduction is shown to be due to the firehose instability criterion, and so for large enough guide fields this effect is suppressed and the outflow speed reaches the upstream Alfven speed based on the reconnecting component of the magnetic field.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا