Do you want to publish a course? Click here

The Reduction of Magnetic Reconnection Outflow Jets to Sub-Alfvenic Speeds

222   0   0.0 ( 0 )
 Added by Colby Haggerty
 Publication date 2018
  fields Physics
and research's language is English




Ask ChatGPT about the research

The outflow velocity of jets produced by collisionless magnetic reconnection is shown to be reduced by the ion exhaust temperature in simulations and observations. We derive a scaling relationship for the outflow velocity based on the upstream Alfven speed and the parallel ion exhaust temperature, which is verified in kinetic simulations and observations. The outflow speed reduction is shown to be due to the firehose instability criterion, and so for large enough guide fields this effect is suppressed and the outflow speed reaches the upstream Alfven speed based on the reconnecting component of the magnetic field.



rate research

Read More

We demonstrate the dragging of the magnetic field by the super-Alfvenic shear flows out of the reconnection plane can strongly localize the reconnection x-line in collisionless plasmas, reversing the current direction at the x-line. Reconnection with this new morphology, which is impossible in resistive-magnetohydrodynamic (MHD), is enabled by electron inertia. Surprisingly, the quasi-steady reconnection rate remains of order 0.1 even though the aspect ratio of the local x-line geometry is larger than unity. We explain this by examining the transport of the reconnected magnetic flux and the opening angle made by the upstream magnetic field, concluding that the reconnection rate is still limited by the constraint imposed at the inflow region. This study further suggests the nearly universal fast rate value of order 0.1 cannot be explained by the physics of tearing modes, nor can it be explained by a universal localization mechanism.
72 - L. G. Suttle 2018
This work presents a magnetic reconnection experiment in which the kinetic, magnetic and thermal properties of the plasma each play an important role in the overall energy balance and structure of the generated reconnection layer. Magnetic reconnection occurs during the interaction of continuous and steady flows of super-Alfvenic, magnetized, aluminum plasma, which collide in a geometry with two-dimensional symmetry, producing a stable and long-lasting reconnection layer. Optical Thomson scattering measurements show that when the layer forms, ions inside the layer are more strongly heated than electrons, reaching temperatures of Ti~ZTe>300 eV - much greater than can be expected from strong shock and viscous heating alone. Later in time, as the plasma density in the layer increases, the electron and ion temperatures are found to equilibrate, and a constant plasma temperature is achieved through a balance of the heating mechanisms and radiative losses of the plasma. Measurements from Faraday rotation polarimetry also indicate the presence of significant magnetic field pile-up occurring at the boundary of the reconnection region, which is consistent with the super-Alfvenic velocity of the inflows.
225 - S. V. Bulanov 2016
The paper examines the prospects of using laser plasmas for studying novel regimes of the magnetic field line reconnection and charged particle acceleration. Basic features of plasma dynamics in the three-dimensional configurations relevant to the formation of current sheets in a plasma are addressed by analyzing exact self-similar solutions of the magneto-hydrodynamics and electron magneto-hydrodynamics equations. Then the magnetic field annihilation in the ultrarelativistic limit is considered, when the opposite polarity magnetic field is generated in collisionless plasma by multiple laser pulses, in the regime with a dominant contribution of the displacement current exciting a strong large-scale electric field. This field leads to the conversion of the magnetic energy into the kinetic energy of accelerated particles inside a thin current sheet. Charged particle acceleration during magnetic field reconnection is discussed when radiation friction and quantum electrodynamics effects become dominant.
The reversibility of the transfer of energy from the magnetic field to the surrounding plasma during magnetic reconnection is examined. Trajectories of test particles in an analytic model of the fields demonstrate that irreversibility is associated with separatrix crossings and regions of weaker magnetic field. Inclusion of a guide field increases the degree of reversibility. Full kinetic simulations with a particle-in-cell code support these results and demonstrate that while time-reversed simulations at first un-reconnect, they eventually evolve into a reconnecting state.
A new regime of fast magnetic reconnection with an out-of-plane (guide) magnetic field is reported in which the key role is played by an electron pressure anisotropy described by the Chew-Goldberger-Low gyrotropic equations of state in the generalized Ohms law, which even dominates the Hall term. A description of the physical cause of this behavior is provided and two-dimensional fluid simulations are used to confirm the results. The electron pressure anisotropy causes the out-of-plane magnetic field to develop a quadrupole structure of opposite polarity to the Hall magnetic field and gives rise to dispersive waves. In addition to being important for understanding what causes reconnection to be fast, this mechanism should dominate in plasmas with low plasma beta and a high in-plane plasma beta with electron temperature comparable to or larger than ion temperature, so it could be relevant in the solar wind and some tokamaks.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا