Do you want to publish a course? Click here

Low Pressure Negative Ion Drift Chamber for Dark Matter Search

79   0   0.0 ( 0 )
 Added by Daniel Snowden-Ifft
 Publication date 1999
  fields Physics
and research's language is English




Ask ChatGPT about the research

Weakly Interacting Massive Particles (WIMPs) are an attractive candidate for the dark matter thought to make up the bulk of the mass of our universe. We explore here the possibility of using a low pressure negative ion drift chamber to search for WIMPs. The innovation of drifting ions, instead of electrons, allows the design of a detector with exceptional sensitivity to, background rejection from, and signature of WIMPs.



rate research

Read More

144 - S. Burgos 2009
Understanding the ability to measure and discriminate particle events at the lowest possible energy is an essential requirement in developing new experiments to search for weakly interacting massive particle (WIMP) dark matter. In this paper we detail an assessment of the potential sensitivity below 10 keV in the 1 m^3 DRIFT-II directionally sensitive, low pressure, negative ion time projection chamber (NITPC), based on event-by-event track reconstruction and calorimetry in the multiwire proportional chamber (MWPC) readout. By application of a digital smoothing polynomial it is shown that the detector is sensitive to sulfur and carbon recoils down to 2.9 and 1.9 keV respectively, and 1.2 keV for electron induced events. The energy sensitivity is demonstrated through the 5.9 keV gamma spectrum of 55Fe, where the energy resolution is sufficient to identify the escape peak. The effect a lower energy sensitivity on the WIMP exclusion limit is demonstrated. In addition to recoil direction reconstruction for WIMP searches this sensitivity suggests new prospects for applications also in KK axion searches.
Negative-ion time projection chambers(TPCs) have been studied for low-rate and high-resolution applications such as dark matter search experiments. Recently, a full volume fiducialization in a self-triggering TPC was realized. This innovative technology demonstrated a significant reduction in the background with MWPC-TPCs. We studied negative-ion TPC using the {mu}-PIC+GEM system and obtained sufficient gas gain with CS$_{2}$gas and SF$_{6}$ gas at low pressures. We expect an improvement in detector sensitivity and angular resolution with better electronics.
We present measurements of drift velocities and mobilities of some innovative negative ion gas mixtures at nearly atmospheric pressure based on SF$_{6}$ as electronegative capture agent and of pure SF$_{6}$ at various pressures, performed with the NITEC detector. NITEC is a Time Projection Chamber with 5 cm drift distance readout by a GEMPix, a triple thin GEMs coupled to a Quad-Timepix chip, directly sensitive to the deposited charge on each of the 55 $times$ 55 $mu$m$^2$ pixel. Our results contribute to expanding the knowledge on the innovative use of SF$_{6}$ as negative ion gas and extend to triple thin GEMs the possibility of negative ion operation for the first time. Above all, our findings show the feasibility of negative ion operation with He:CF$_4$:SF$_{6}$ at 610 Torr, opening extremely interesting possibility for next generation directional Dark Matter detectors at 1 bar.
218 - O. Guillaudin 2011
There is considerable experimental effort dedicated to the directional detection of particle dark matter. Gaseous mu-TPC detectors present the privileged features of being able to reconstruct the track and the energy of the recoil nucleus following the interaction. A precise measurement of the recoil energy is a key point for the directional search strategy. Quenching has to be taken into account, i.e. only a certain fraction of the recoil energy is deposited in the ionization channel. Measurements of the ionization quenching factor for different gas mixture at room temperature have been made with a dedicated ion beam facility at the LPSC of Grenoble.
A liquid-methane ionization chamber is proposed as a setup to search for spin-dependent interactions of dark-matter particles with hydrogen
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا