Do you want to publish a course? Click here

On the Spectrum and Nature of the Peculiar Type Ia Supernova 1991T

46   0   0.0 ( 0 )
 Added by Kazuhito Hatano
 Publication date 1998
  fields Physics
and research's language is English




Ask ChatGPT about the research

A parameterized supernova synthetic-spectrum code is used to study line identifications in the photospheric-phase spectra of the peculiar Type Ia SN 1991T, and to extract some constraints on the composition structure of the ejected matter. The inferred composition structure is not like that of any hydrodynamical model for Type Ia supernovae. Evidence that SN 1991T was overluminous for an SN Ia is presented, and it is suggested that this peculiar event probably was a substantially super-Chandrasekhar explosion that resulted from the merger of two white dwarfs.



rate research

Read More

PTF09dav is a peculiar subluminous type Ia supernova (SN) discovered by the Palomar Transient Factory (PTF). Spectroscopically, it appears superficially similar to the class of subluminous SN1991bg-like SNe, but it has several unusual features which make it stand out from this population. Its peak luminosity is fainter than any previously discovered SN1991bg-like SN Ia (M_B -15.5), but without the unusually red optical colors expected if the faint luminosity were due to extinction. The photospheric optical spectra have very unusual strong lines of Sc II and Mg I, with possible Sr II, together with stronger than average Ti II and low velocities of ~6000 km/s. The host galaxy of PTF09dav is ambiguous. The SN lies either on the extreme outskirts (~41kpc) of a spiral galaxy, or in an very faint (M_R>-12.8) dwarf galaxy, unlike other 1991bg-like SNe which are invariably associated with massive, old stellar populations. PTF09dav is also an outlier on the light-curve-width--luminosity and color--luminosity relations derived for other sub-luminous SNe Ia. The inferred 56Ni mass is small (0.019+/-0.003Msun), as is the estimated ejecta mass of 0.36Msun. Taken together, these properties make PTF09dav a remarkable event. We discuss various physical models that could explain PTF09dav. Helium shell detonation or deflagration on the surface of a CO white-dwarf can explain some of the features of PTF09dav, including the presence of Sc and the low photospheric velocities, but the observed Si and Mg are not predicted to be very abundant in these models. We conclude that no single model is currently capable of explaining all of the observed signatures of PTF09dav.
We present 39 nights of optical photometry, 34 nights of infrared photometry, and 4 nights of optical spectroscopy of the Type Ia SN 1999ac. This supernova was discovered two weeks before maximum light, and observations were begun shortly thereafter. At early times its spectra resembled the unusual SN 1999aa and were characterized by very high velocities in the Ca II H and K lines, but very low velocities in the Si II 6355 A line. The optical photometry showed a slow rise to peak brightness but, quite peculiarly, was followed by a more rapid decline from maximum. Thus, the B- and V-band light curves cannot be characterized by a single stretch factor. We argue that the best measure of the nature of this object is not the decline rate parameter Delta m_15 (B). The B-V colors were unusual from 30 to 90 days after maximum light in that they evolved to bluer values at a much slower rate than normal Type Ia supernovae. The spectra and bolometric light curve indicate that this event was similar to the spectroscopically peculiar slow decliner SN 1999aa.
The Type Ia SN 2000cx exhibited multiple peculiarities, including a lopsided B-band light-curve peak that does not conform to current methods for using shapes of light curves to standardize SN Ia luminosities. We use the parameterized supernova synthetic-spectrum code SYNOW to study line identifications in the photospheric-phase spectra of SN 2000cx. Previous work established the presence of Ca II infrared-triplet features forming above velocity about 20,000 km/s, much higher than the photospheric velocity of about 10,000 km/s. We find Ti II features forming at the same high velocity. High-velocity line formation is partly responsible for the photometric peculiarities of SN 2000cx: for example, B-band flux blocking by Ti II absorption features that decreases with time causes the B light curve to rise more rapidly and decline more slowly than it otherwise would. SN 2000cx contains an absorption feature near 4530 A that may be H-beta, forming at the same high velocity. The lack of conspicuous H-alpha and P-alpha signatures does not necessarily invalidate the H-beta identification if the high-velocity line formation is confined to a clump that partly covers the photosphere and the H-alpha and P-alpha source functions are elevated relative to that of resonance scattering. The H-beta identification is tentative. If it is correct, the high-velocity matter must have come from a nondegenerate companion star.
215 - J. Vinko , L.L. Kiss , B. Csak 2001
We present medium resolution (lambda/Delta lambda = 2500) optical spectroscopy of SN 1999by in NGC 2841 made around its light maximum. The depth ratio of the two Si II features at 5800 AA and 6150 AA being R(SiII) approx. 0.63 at maximum indicates that this SN belongs to the peculiar, sub-luminous SNe Ia. Radial velocities inferred from the minimum of the 6150 AA trough reveal a steeper decline of the velocity curve than expected for ``normal SNe Ia, consistent with the behavior of published VRI light curves. A revised absolute magnitude of SN 1999by and distance to its host galaxy NGC 2841 is estimated based on the Multi-Color Light Curve Shape (MLCS) method, resulting in M_V(max)=-18.06+/- 0.1 mag and d = 17.1+/-1.2 Mpc, respectively. An approximative linear dependence of the luminosity parameter Delta on R(SiII) is presented.
Early observations of Type Ia supernovae (SNe$,$Ia) provide essential clues for understanding the progenitor system that gave rise to the terminal thermonuclear explosion. We present exquisite observations of SN$,$2019yvq, the second observed SN$,$Ia, after iPTF$,$14atg, to display an early flash of emission in the ultraviolet (UV) and optical. Our analysis finds that SN$,$2019yvq was unusual, even when ignoring the initial flash, in that it was moderately underluminous for an SN$,$Ia ($M_g approx -18.5,$mag at peak) yet featured very high absorption velocities ($v approx 15,000,mathrm{km,s}^{-1}$ for Si II $lambda$6355 at peak). We find that many of the observational features of SN$,$2019yvq, aside from the flash, can be explained if the explosive yield of radioactive $^{56}mathrm{Ni}$ is relatively low (we measure $M_{^{56}mathrm{Ni}} = 0.31 pm 0.05,M_odot$) and it and other iron-group elements are concentrated in the innermost layers of the ejecta. To explain both the UV/optical flash and peak properties of SN$,$2019yvq we consider four different models: interaction between the SN ejecta and a nondegenerate companion, extended clumps of $^{56}mathrm{Ni}$ in the outer ejecta, a double-detonation explosion, and the violent merger of two white dwarfs. Each of these models has shortcomings when compared to the observations; it is clear additional tuning is required to better match SN$,$2019yvq. In closing, we predict that the nebular spectra of SN$,$2019yvq will feature either H or He emission, if the ejecta collided with a companion, strong [Ca II] emission, if it was a double detonation, or narrow [O I] emission, if it was due to a violent merger.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا