Do you want to publish a course? Click here

The Peculiar Type Ia Supernova 1999by: Spectroscopy at Early Epochs

216   0   0.0 ( 0 )
 Added by Laszlo L. Kiss
 Publication date 2001
  fields Physics
and research's language is English




Ask ChatGPT about the research

We present medium resolution (lambda/Delta lambda = 2500) optical spectroscopy of SN 1999by in NGC 2841 made around its light maximum. The depth ratio of the two Si II features at 5800 AA and 6150 AA being R(SiII) approx. 0.63 at maximum indicates that this SN belongs to the peculiar, sub-luminous SNe Ia. Radial velocities inferred from the minimum of the 6150 AA trough reveal a steeper decline of the velocity curve than expected for ``normal SNe Ia, consistent with the behavior of published VRI light curves. A revised absolute magnitude of SN 1999by and distance to its host galaxy NGC 2841 is estimated based on the Multi-Color Light Curve Shape (MLCS) method, resulting in M_V(max)=-18.06+/- 0.1 mag and d = 17.1+/-1.2 Mpc, respectively. An approximative linear dependence of the luminosity parameter Delta on R(SiII) is presented.



rate research

Read More

PTF09dav is a peculiar subluminous type Ia supernova (SN) discovered by the Palomar Transient Factory (PTF). Spectroscopically, it appears superficially similar to the class of subluminous SN1991bg-like SNe, but it has several unusual features which make it stand out from this population. Its peak luminosity is fainter than any previously discovered SN1991bg-like SN Ia (M_B -15.5), but without the unusually red optical colors expected if the faint luminosity were due to extinction. The photospheric optical spectra have very unusual strong lines of Sc II and Mg I, with possible Sr II, together with stronger than average Ti II and low velocities of ~6000 km/s. The host galaxy of PTF09dav is ambiguous. The SN lies either on the extreme outskirts (~41kpc) of a spiral galaxy, or in an very faint (M_R>-12.8) dwarf galaxy, unlike other 1991bg-like SNe which are invariably associated with massive, old stellar populations. PTF09dav is also an outlier on the light-curve-width--luminosity and color--luminosity relations derived for other sub-luminous SNe Ia. The inferred 56Ni mass is small (0.019+/-0.003Msun), as is the estimated ejecta mass of 0.36Msun. Taken together, these properties make PTF09dav a remarkable event. We discuss various physical models that could explain PTF09dav. Helium shell detonation or deflagration on the surface of a CO white-dwarf can explain some of the features of PTF09dav, including the presence of Sc and the low photospheric velocities, but the observed Si and Mg are not predicted to be very abundant in these models. We conclude that no single model is currently capable of explaining all of the observed signatures of PTF09dav.
We present a first systematic comparison of superluminous Type Ia supernovae (SNe Ia) at late epochs, including previously unpublished photometric and spectroscopic observations of SN 2007if, SN 2009dc and SNF20080723-012. Photometrically, the objects of our sample show a diverse late-time behaviour, some of them fading quite rapidly after a light-curve break at ~150-200d. The latter is likely the result of flux redistribution into the infrared, possibly caused by dust formation, rather than a true bolometric effect. Nebular spectra of superluminous SNe Ia are characterised by weak or absent [Fe III] emission, pointing at a low ejecta ionisation state as a result of high densities. To constrain the ejecta and 56Ni masses of superluminous SNe Ia, we compare the observed bolometric light curve of SN 2009dc with synthetic model light curves, focusing on the radioactive tail after ~60d. Models with enough 56Ni to explain the light-curve peak by radioactive decay, and at the same time sufficient mass to keep the ejecta velocities low, fail to reproduce the observed light-curve tail of SN 2009dc because of too much gamma-ray trapping. We instead propose a model with ~1 solar mass of 56Ni and ~2 solar masses of ejecta, which may be interpreted as the explosion of a Chandrasekhar-mass white dwarf (WD) enshrouded by 0.6-0.7 solar masses of C/O-rich material, as it could result from a merger of two massive C/O WDs. This model reproduces the late light curve of SN 2009dc well. A flux deficit at peak may be compensated by light from the interaction of the ejecta with the surrounding material.
We present UBVRIJHK photometry and optical spectroscopy of the so-called peculiar Type Ia supernova 1999by in NGC 2841. The observations began one week before visual maximum light which is well-defined by daily observations. The light curves and spectra are similar to those of the prototypical subluminous event SN 1991bg. We find that maximum light in B occurred on 1999 May 10.3 UT (JD 2,451,308.8 +/- 0.3) with B=13.66 +/- 0.02 mag and a color of B_max-V_max=0.51 +/- 0.03 mag. The late-time color implies minimal dust extinction from the host galaxy. Our photometry, when combined with the recent Cepheid distance to NGC 2841 (Macri et al. 2001), gives a peak absolute magnitude of M_B=-17.15 +/- 0.23 mag, making SN 1999by one of the least luminous Type Ia events ever observed. We estimate a decline rate parameter of dm15(B)=1.90 mag, versus 1.93 for SN 1991bg, where 1.10 is typical for so-called normal events. We compare SN 1999by with other subluminous events and find that the B_max-V_max color correlates strongly with the decline rate and may be a more sensitive indicator of luminosity than the fading rate for these objects. We find a good correlation between luminosity and the depth of the spectral feature at 580 nm, which had been attributed solely to Si II. We show that in cooler photospheres the 580 nm feature is dominated by Ti II, which provides a simple physical explanation for the correlation. Using only subluminous Type Ia supernovae we derive a Hubble parameter of H_0=75 +12 -11 km/s Mpc, consistent with values found from brighter events.
We present polarization spectra near maximum light for the strongly subluminous Type Ia supernova 1999by that show that the supernova is intrinsically polarized. SN 1999by has an observed, overall level of polarization of ~0.3 to 0.8%, a rise of the polarization P redward of 6500 A, and a change in polarization across the Si II 6150 A feature of about 0.4%. The distribution of points with wavelength using an empirical Q-U plane method reveals that SN 1999by has a well-defined axis of symmetry and suggests an interstellar polarization (ISP) vector with P(ISP)=0.3% and position angle Theta = 150 deg with an error circle in the Q-U plane of radius about 0.1%. Synthetic NLTE-spectra for axisymmetric configurations based on delayed detonation models have been computed assuming ellipsoidal geometry. Both flux and polarization spectra can be reasonably well reproduced by models with an asphericity of ~20 % observed equator-on. The general properties of the polarization can be understood as a consequence of the structure of subluminous models. The low upper limits for polarization determined for many normal events in contrast to the high polarization in SN 1999by may suggest a relation between the asymmetry we observed and the mechanism that produces a subluminous Type Ia. Among various mechanisms, rapid rotation of the progenitor white dwarf, or an explosion during a binary white dwarf merger process are likely candidates to explain the asphericity in SN 1999by.
Early observations of Type Ia supernovae (SNe$,$Ia) provide essential clues for understanding the progenitor system that gave rise to the terminal thermonuclear explosion. We present exquisite observations of SN$,$2019yvq, the second observed SN$,$Ia, after iPTF$,$14atg, to display an early flash of emission in the ultraviolet (UV) and optical. Our analysis finds that SN$,$2019yvq was unusual, even when ignoring the initial flash, in that it was moderately underluminous for an SN$,$Ia ($M_g approx -18.5,$mag at peak) yet featured very high absorption velocities ($v approx 15,000,mathrm{km,s}^{-1}$ for Si II $lambda$6355 at peak). We find that many of the observational features of SN$,$2019yvq, aside from the flash, can be explained if the explosive yield of radioactive $^{56}mathrm{Ni}$ is relatively low (we measure $M_{^{56}mathrm{Ni}} = 0.31 pm 0.05,M_odot$) and it and other iron-group elements are concentrated in the innermost layers of the ejecta. To explain both the UV/optical flash and peak properties of SN$,$2019yvq we consider four different models: interaction between the SN ejecta and a nondegenerate companion, extended clumps of $^{56}mathrm{Ni}$ in the outer ejecta, a double-detonation explosion, and the violent merger of two white dwarfs. Each of these models has shortcomings when compared to the observations; it is clear additional tuning is required to better match SN$,$2019yvq. In closing, we predict that the nebular spectra of SN$,$2019yvq will feature either H or He emission, if the ejecta collided with a companion, strong [Ca II] emission, if it was a double detonation, or narrow [O I] emission, if it was due to a violent merger.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا