Do you want to publish a course? Click here

The gravitational lens MG0414+0534: a link between red galaxies and dust

102   0   0.0 ( 0 )
 Added by Brian McLeod
 Publication date 1998
  fields Physics
and research's language is English




Ask ChatGPT about the research

We present near infrared observations of the red gravitational lens system MG0414+0534. Our images are of sufficient quality to allow photometry of all four QSO images and the lens galaxy. The observations show that the K-band brightnesses of the components are more similar to the radio brightnesses than to the optical and thus support the notion that the system is highly reddened. The differing brightnesses at visible wavelengths are interpreted as variable amounts of extinction in the lens galaxy. The lens galaxy is detected at K-band and is as red as any other known galaxy of comparable apparent magnitude. An estimate of the redshift of the lens galaxy of 0.45 < z < 0.6 is determined from the Faber-Jackson relation and photometric considerations. By extension we argue that other very red field galaxies may contain large amounts of dust. K-band spectra of the individual components show no difference in the H-alpha equivalent widths among the components. This is evidence against significant microlensing.



rate research

Read More

179 - E. Ros 2000
We observed the quadruple gravitationally lensed image of MGJ0414+0534 on 23 November 1997 with a global VLBI array at 8.4 GHz. We report wide-field imaging results of its four components at submilliarcsecond resolution, displaying complex core-like and jet-like extended structures. A simple model combining a singular isothermal ellipsoid to represent the main lens galaxy, external shear, and a singular isothermal sphere to represent an additional, nearby object accounts well for the core positions and flux densities of the VLBI images. This model predicts delays between the different lensed images of several weeks.
63 - E.E. Falco 1999
We determine 37 differential extinctions in 23 gravitational lens galaxies over the range 0 < z_l < 1. Only 7 of the 23 systems have spectral differences consistent with no differential extinction. The median differential extinction for the optically-selected (radio-selected) subsample is E(B-V)=0.04 (0.06) mag. The extinction is patchy and shows no correlation with impact parameter. The median total extinction of the bluest images is E(B-V)=0.08 mag, although the total extinction distribution is dominated by the uncertainties in the intrinsic colors of quasars. The directly measured extinction distributions are consistent with the mean extinction estimated by comparing the statistics of quasar and radio lens surveys, thereby confirming the need for extinction corrections when using the statistics of lensed quasars to estimate the cosmological model. A disjoint subsample of two face-on, radio-selected spiral lenses shows both high differential and total extinctions, but standard dust-to-gas ratios combined with the observed molecular gas column densities overpredict the amount of extinction by factors of 2-5. For several systems we can estimate the extinction law, ranging from R_V=1.5+/-0.2 for a z_l=0.96 elliptical, to R_V=7.2+/-0.1 for a z_l=0.68 spiral. For the four radio lenses where we can construct non-parametric extinction curves we find no evidence for gray dust over the IR-UV wavelength range. The dust can be used to estimate lens redshifts with reasonable accuracy, although we sometimes find two degenerate redshift solutions.
90 - C.S. Kochanek 1999
Most gravitational lens galaxies are early-type galaxies in relatively low density environments. We show that they lie on the same fundamental plane as early-type galaxies in both local and distant rich clusters. Their surface brightness evolution requires a typical star formation epoch of z=2-3, almost indistinguishable from that of rich cluster galaxies at comparable redshifts. The restricted galaxy type range of the lenses means that photometric redshifts work well even with only 1-3 filter photometry. We make preliminary measurements of the mass and luminosity functions of the lens galaxies, and find they are consistent with the standard model used for deriving cosmological limits using lens statistics. As expected for a mass-weighted sample, they are more massive and more luminous than the overall early-type galaxy population.
We re-address the classification criterion for extremely red galaxies (ERGs) of Pozzetti and Mannucci (2000 -- PM00), which aims to separate, in the Ic-K (or Rc-K) vs. J-K colour--colour diagram, passively evolving, old (> 1 Gyr) stellar populations in a dust-free environment, associated with ellipticals (Es), from dusty starburst galaxies (DSGs), both at 1 < z < 2. We explore a category of objects not considered previously, i.e., galaxies forming in this redshift range on short (0.1 Gyr) timescales and observed also in their early, dusty post-starburst phase. We also investigate the impact of structure of the dusty medium and dust amount on the observed optical/near-IR colours of high-z DSGs/DPSGs, through multiple-scattering radiative transfer calculations for a dust/stars configuration and an extinction function calibrated with nearby dusty starbursts. As a main result, we find that dusty post-starburst galaxies (DPSGs), with ages between 0.2 and 1 Gyr, at 1.3 < z < 2 mix with Es at 1 < z < 2 for a large range in dust amount. This ``intrusion is a source of concern for the present two-colour classification of ERGs. On the other hand, we confirm, in agreement with PM00, that DSGs are well separated from Es, both at 1 < z < 2, in the Ic-K vs. J-K colour--colour diagram, whatever the structure (two-phase clumpy or homogeneous) of their dusty medium and their dust amount are. This result holds under the new hypothesis of high-z Es being as dusty as nearby ones. Thus the interpretation of the optical/near-IR colours of high-z Es may suffer from a multiple degeneracy among age, metallicity, dust and redshift. We also find that DPSGs at z around 1 mix with DSGs at 1 < z < 2, as a function of dust amount and structure of the dusty medium. All these results help explaining the complexity of the ERG classification... (Abridged)
We present $^{12}$CO(1-0) and $^{12}$CO(2-1) observations of a sample of 20 star-forming dwarfs selected from the Herschel Virgo Cluster Survey, with oxygen abundances ranging from 12 + log(O/H) ~ 8.1 to 8.8. CO emission is observed in ten galaxies and marginally detected in another one. CO fluxes correlate with the FIR 250 $mu$m emission, and the dwarfs follow the same linear relation that holds for more massive spiral galaxies extended to a wider dynamical range. We compare different methods to estimate H2 molecular masses, namely a metallicity-dependent CO-to-H2 conversion factor and one dependent on H-band luminosity. The molecular-to-stellar mass ratio remains nearly constant at stellar masses <~ 10$^9$ M$_{odot}$, contrary to the atomic hydrogen fraction, M$_{HI}$/M$_*$, which increases inversely with M$_*$. The flattening of the M$_{H_2}$/M$_*$ ratio at low stellar masses does not seem to be related to the effects of the cluster environment because it occurs for both HI-deficient and HI-normal dwarfs. The molecular-to-atomic ratio is more tightly correlated with stellar surface density than metallicity, confirming that the interstellar gas pressure plays a key role in determining the balance between the two gaseous components of the interstellar medium. Virgo dwarfs follow the same linear trend between molecular gas mass and star formation rate as more massive spirals, but gas depletion timescales, $tau_{dep}$, are not constant and range between 100 Myr and 6 Gyr. The interaction with the Virgo cluster environment is removing the atomic gas and dust components of the dwarfs, but the molecular gas appears to be less affected at the current stage of evolution within the cluster. However, the correlation between HI deficiency and the molecular gas depletion time suggests that the lack of gas replenishment from the outer regions of the disc is lowering the star formation activity.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا