Do you want to publish a course? Click here

Dust and Extinction Curves in Galaxies with z>0: The Interstellar Medium of Gravitational Lens Galaxies

64   0   0.0 ( 0 )
 Added by C. S. Kochanek
 Publication date 1999
  fields Physics
and research's language is English
 Authors E.E. Falco




Ask ChatGPT about the research

We determine 37 differential extinctions in 23 gravitational lens galaxies over the range 0 < z_l < 1. Only 7 of the 23 systems have spectral differences consistent with no differential extinction. The median differential extinction for the optically-selected (radio-selected) subsample is E(B-V)=0.04 (0.06) mag. The extinction is patchy and shows no correlation with impact parameter. The median total extinction of the bluest images is E(B-V)=0.08 mag, although the total extinction distribution is dominated by the uncertainties in the intrinsic colors of quasars. The directly measured extinction distributions are consistent with the mean extinction estimated by comparing the statistics of quasar and radio lens surveys, thereby confirming the need for extinction corrections when using the statistics of lensed quasars to estimate the cosmological model. A disjoint subsample of two face-on, radio-selected spiral lenses shows both high differential and total extinctions, but standard dust-to-gas ratios combined with the observed molecular gas column densities overpredict the amount of extinction by factors of 2-5. For several systems we can estimate the extinction law, ranging from R_V=1.5+/-0.2 for a z_l=0.96 elliptical, to R_V=7.2+/-0.1 for a z_l=0.68 spiral. For the four radio lenses where we can construct non-parametric extinction curves we find no evidence for gray dust over the IR-UV wavelength range. The dust can be used to estimate lens redshifts with reasonable accuracy, although we sometimes find two degenerate redshift solutions.



rate research

Read More

We use observations from the CASTLES survey of gravitational lenses to study extinction in 23 lens galaxies with $0 < z_l < 1$. The median differential extinction between lensed images is $Delta E(bv) = 0.05$ mag, and the directly measured extinctions agree with the amount needed to explain the differences between the statistics of radio and (optical) quasar lens surveys. We also measure the first extinction laws outside the local universe, including an $R_V=7.2$ curve for a molecular cloud at $z_l=0.68$ and an $R_V=1.5$ curve for the dust in a redshift $z_l=0.96$ elliptical galaxy.
Typical galaxies emit about one third of their energy in the infrared. The origin of this emission reprocessed starlight absorbed by interstellar dust grains and reradiated as thermal emission in the infrared. In particularly dusty galaxies, such as starburst galaxies, the fraction of energy emitted in the infrared can be as high as 90%. Dust emission is found to be an excellent tracer of the beginning and end stages of a stars life, where dust is being produced by post-main-sequence stars, subsequently added to the interstellar dust reservoir, and eventually being consumed by star and planet formation. This work reviews the current understanding of the size and properties of this interstellar dust reservoir, by using the Large Magellanic Cloud as an example, and what can be learned about the dust properties and star formation in galaxies from this dust reservoir, using SPICA, building on previous work performed with the Herschel and Spitzer Space Telescopes, as well as the Infrared Space Observatory.
392 - P.Schady , T.Dwelly , M.J.Page 2011
The composition and amount of interstellar dust within gamma-ray burst (GRB) host galaxies is of key importance when addressing selection effects in the GRB redshift distribution, and when studying the properties of their host galaxies. As well as the implications for GRB research, probing the dust within the high-z hosts of GRBs also contributes to our understanding of the conditions of the interstellar medium and star-formation in the distant Universe. Nevertheless, the physical properties of dust within GRB host galaxies continues to be a highly contended issue. In this paper we explore the mean extinction properties of dust within the host galaxies of a sample of 17 GRBs with total host galaxy visual extinction Av<1 (<Av>=0.4), covering a redshift range z=0.7-3.1. We find the average host extinction curve to have an ultraviolet slope comparable to that of the LMC, but with little evidence of a 2175Angs dust extinction feature as observed along Milky Way and LMC sightlines. We cannot at present rule out the presence of a 2175Angs feature, and both the standard SMC and LMC extinction curves also provide good fits to our data. However, we can reject an extinction curve that has a UV slope as flat as the mean Milky Way extinction curve, whilst also having a 2175Angs feature as prominent as seen in the mean Milky Way extinction curve. This is in contrast to the clear detection of a 2175Angs bump and the flatter extinction curves of some more heavily extinguished GRBs (Av>1), which may be indicative of there being a dependence between dust abundance and the wavelength dependence of dust extinction, as has been previously speculated.
Interstellar dust plays a central role in shaping the detailed structure of the interstellar medium, thus strongly influencing star formation and galaxy evolution. Dust extinction provides one of the main pillars of our understanding of interstellar dust while also often being one of the limiting factors when interpreting observations of distant objects, including resolved and unresolved galaxies. The ultraviolet (UV) and mid-infrared (MIR) wavelength regimes exhibit features of the main components of dust, carbonaceous and silicate materials, and therefore provide the most fruitful avenue for detailed extinction curve studies. Our current picture of extinction curves is strongly biased to nearby regions in the Milky Way. The small number of UV extinction curves measured in the Local Group (mainly Magellanic Clouds) clearly indicates that the range of dust properties is significantly broader than those inferred from the UV extinction characteristics of local regions of the Milky Way. Obtaining statistically significant samples of UV and MIR extinction measurements for all the dusty Local Group galaxies will provide, for the first time, a basis for understanding dust grains over a wide range of environments. Obtaining such observations requires sensitive medium-band UV, blue-optical, and mid-IR imaging and followup R ~ 1000 spectroscopy of thousands of sources. Such a census will revolutionize our understanding of the dependence of dust properties on local environment providing both an empirical description of the effects of dust on observations as well as strong constraints on dust grain and evolution models.
New low-resolution UV spectra of a sample of reddened OB stars in M31 were obtained with HST/STIS to study the wavelength dependence of interstellar extinction and the nature of the underlying dust grain populations. Extinction curves were constructed for four reddened sightlines in M31 paired with closely matching stellar atmosphere models. The new curves have a much higher S/N than previous studies. Direct measurements of N(H I) were made using the Ly$alpha$ absorption lines enabling gas-to-dust ratios to be calculated. The sightlines have a range in galactocentric distance of 5 to 14 kpc and represent dust from regions of different metallicities and gas-to-dust ratios. The metallicities sampled range from Solar to 1.5 Solar. The measured curves show similarity to those seen in the Milky Way and the Large Magellanic Cloud. The Maximum Entropy Method was used to investigate the dust composition and size distribution for the sightlines observed in this program finding that the extinction curves can be produced with the available carbon and silicon abundances if the metallicity is super-Solar.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا