Do you want to publish a course? Click here

Hubble Parameter in Void Universe

119   0   0.0 ( 0 )
 Added by Ken-ichi Nakao
 Publication date 1995
  fields Physics
and research's language is English




Ask ChatGPT about the research

We investigate the distance-redshift relation in the simple void model. As discussed by Moffat and Tatarski, if the observer stays at the center of the void, the observed Hubble parameter is not so different from the background Hubble parameter. However, if the position of observer is off center of the void, we must consider the peculiar velocity correction which is measured by the observed dipole anisotropy of cosmic microwave background. This peculiar velocity correction for the redshift is crucial to determine the Hubble parameter and we shall discuss this effect. Further the results of Turner et al by the N-body simulation will be also considered.



rate research

Read More

In this work, we use observations of the Hubble parameter from the differential ages of passively evolving galaxies and the recent detection of the Baryon Acoustic Oscillations (BAO) at $z_1=0.35$ to constrain the Dvali-Gabadadze-Porrati (DGP) universe. For the case with a curvature term, we set a prior $h=0.73pm0.03$ and the best-fit values suggest a spatially closed Universe. For a flat Universe, we set $h$ free and we get consistent results with other recent analyses.
Voids have emerged as a novel probe of cosmology and large-scale structure. These regions of extreme underdensity are sensitive to physics beyond the standard model of cosmology, and can potentially be used as a testing ground to constrain new physics. We present the first determination of the linear void bias measured in separate universe simulations. Our methods are validated by comparing the separate universe response bias with the clustering bias of voids. We find excellent agreement between the two methods for voids identified in the halo field and the down-sampled dark matter field. For voids traced by halos, we identify two different contributions to the bias. The first is due to the bias of the underlying halo field used to identify voids, while the second we attribute to the dynamical impact of long-wavelength density perturbations on void formation and expansion. By measuring these contributions individually, we demonstrate that their sum is consistent with the total void bias. We also measure the void profiles in our simulations, and determine their separate universe response. These can be interpreted as the sensitivity of the profiles to the background density of the Universe.
We study the evolution of linear density perturbations in a large spherical void universe which accounts for the acceleration of the cosmic volume expansion without introducing dark energy. The density contrast of this void is not large within the light cone of an observer at the center of the void. Therefore, we describe the void structure as a perturbation with a dimensionless small parameter $kappa$ in a homogeneous and isotropic universe within the region observable for the observer. We introduce additional anisotropic perturbations with a dimensionless small parameter $epsilon$, whose evolution is of interest. Then, we solve perturbation equations up to order $kappa epsilon$ by applying second-order perturbation theory in the homogeneous and isotropic universe model. By this method, we can know the evolution of anisotropic perturbations affected by the void structure. We show that the growth rate of the anisotropic density perturbations in the large void universe is significantly different from that in the homogeneous and isotropic universe. This result suggests that the observation of the distribution of galaxies may give a strong constraint on the large void universe model.
Cosmic voids are biased tracers of the large-scale structure of the universe. Separate universe simulations (SUS) enable accurate measurements of this biasing relation by implementing the peak-background split (PBS). In this work, we apply the SUS technique to measure the void bias parameters. We confirm that the PBS argument works well for underdense tracers. The response of the void size distribution depends on the void radius. For voids larger (smaller) than the size at the peak of the distribution, the void abundance responds negatively (positively) to a long wavelength mode. The linear bias from the SUS is in good agreement with the cross power spectrum measurement on large scales. Using the SUS, we have detected the quadratic void bias for the first time in simulations. We find that $ b_2 $ is negative when the magnitude of $ b_1 $ is small, and that it becomes positive and increases rapidly when $ |b_1| $ increases. We compare the results from voids identified in the halo density field with those from the dark matter distribution, and find that the results are qualitatively similar, but the biases generally shift to the larger voids sizes.
53 - R. Giovanelli 1999
Zehavi et al. (1998) have suggested that the Hubble flow within 70/h Mpc may be accelerated by the existence of a void centered on the Local Group. Its underdensity would be ~20 %, which would result in a local Hubble distortion of about 6.5 %. We have combined the peculiar velocity data of two samples of clusters of galaxies, SCI and SCII, to investigate the amplitude of Hubble distortions to 200/h Mpc. Our results are not supportive of that conclusion. The amplitude of a possible distortion in the Hubble flow within 70/h Mpc in the SCI+SCII merged data is 0.010pm0.022. The largest, and still quite marginal, geocentric deviation from smooth Hubble flow consistent with that data set is a shell with (Delta H)/H =0.027pm0.023, centered at hd = 101 Mpc and extending over some 30/h Mpc. Our results are thus consistent with a Hubble flow that, on distances in excess of about 50/h Mpc, is remarkably smooth.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا