No Arabic abstract
Zehavi et al. (1998) have suggested that the Hubble flow within 70/h Mpc may be accelerated by the existence of a void centered on the Local Group. Its underdensity would be ~20 %, which would result in a local Hubble distortion of about 6.5 %. We have combined the peculiar velocity data of two samples of clusters of galaxies, SCI and SCII, to investigate the amplitude of Hubble distortions to 200/h Mpc. Our results are not supportive of that conclusion. The amplitude of a possible distortion in the Hubble flow within 70/h Mpc in the SCI+SCII merged data is 0.010pm0.022. The largest, and still quite marginal, geocentric deviation from smooth Hubble flow consistent with that data set is a shell with (Delta H)/H =0.027pm0.023, centered at hd = 101 Mpc and extending over some 30/h Mpc. Our results are thus consistent with a Hubble flow that, on distances in excess of about 50/h Mpc, is remarkably smooth.
We present new results from the SCUBA Local Universe Galaxy Survey (SLUGS), the first large systematic submillimetre survey of the local Universe. Since our initial survey of a sample of 104 IRAS-selected galaxies we have now completed a survey of a sample of 81 optically-selected galaxies, observed with the SCUBA camera on the James Clerk Maxwell Telescope. Since SCUBA is sensitive to the 90% of dust too cold to radiate significantly in the IRAS bands our new sample represents the first unbiased survey of dust in galaxies along the whole length of the Hubble sequence. We find little change in the properties of dust in galaxies along the Hubble sequence and detected 6 out of 11 elliptical galaxies. As in our earlier work on IRAS galaxies we find that the IRAS and submm fluxes are well-fitted by a two-component dust model with dust emissivity index beta=2. The major difference from our earlier work is that we find the ratio of the mass of cold dust to the mass of warm dust is much higher for our optically-selected galaxies and can reach values of ~1000. Comparison of the results for the IRAS- and optically-selected samples shows that there is a population of galaxies containing a large proportion of cold dust that is unrepresented in the IRAS sample. We derive local submm luminosity and dust mass functions, both directly from our optically-selected SLUGS sample, and by extrapolation from the IRAS PSCz survey using the method of Serjeant & Harrison, and find excellent agreement between the two. We find them to be well-fitted by Schechter functions except at the highest luminosities. We find that as a consequence of the omission of cold galaxies from the IRAS sample the luminosity function presented in our earlier work is too low by a factor of 2.
We study large scale structure in the cosmology of Coleman-de Luccia bubble collisions. Within a set of controlled approximations we calculate the effects on galaxy motion seen from inside a bubble which has undergone such a collision. We find that generically bubble collisions lead to a coherent bulk flow of galaxies on some part of our sky, the details of which depend on the initial conditions of the collision and redshift to the galaxy in question. With other parameters held fixed the effects weaken as the amount of inflation inside our bubble grows, but can produce measurable flows past the number of efolds required to solve the flatness and horizon problems.
We investigate the distance-redshift relation in the simple void model. As discussed by Moffat and Tatarski, if the observer stays at the center of the void, the observed Hubble parameter is not so different from the background Hubble parameter. However, if the position of observer is off center of the void, we must consider the peculiar velocity correction which is measured by the observed dipole anisotropy of cosmic microwave background. This peculiar velocity correction for the redshift is crucial to determine the Hubble parameter and we shall discuss this effect. Further the results of Turner et al by the N-body simulation will be also considered.
We consider the model of a false vacuum bubble with a thin wall where the surface energy density is composed of two different components, domain-wall type and dust type, with opposite signs. We find stably oscillating solutions, which we call breathing bubbles. By decay to a lower mass state, such a breathing bubble could become either i) a child universe or ii) a bubble that eats up the original universe, depending on the sign of the surface energy of the domain-wall component. We also discuss the effect of the finite-thickness corrections to the thin-wall approximation and possible origins of the energy contents of our model.
The Sun is located in a low-density region of the interstellar medium partially filled with hot gas that is the likely result of several nearby supernova explosions within the last 10 Myr. Here we use astrometric data to show that part of the Scorpius-Centaurus OB association was located closer to the present position of the Sun 5-7 Myr ago than today. Evolutionary synthesis models indicate that the association must have experienced ~20 supernova explosions in the last 10-12 Myr, a prediction that is supported by the detection of four or five runaway stars escaping from it. The ~6 SNe produced by the Lower Centaurus Crux subgroup are likely responsible for the creation of the Local Bubble.